

# REGIONAL GROUNDWATER MONITORING REPORT WATER YEAR 2003-2004

Central and West Coast Basins Los Angeles County, California



# REGIONAL GROUNDWATER MONITORING REPORT CENTRAL AND WEST COAST BASINS LOS ANGELES COUNTY, CALIFORNIA WATER YEAR 2003-2004

Water Replenishment District of Southern California 12621 E. 166<sup>th</sup> Street Cerritos, California 90703 (562) 921-5521

| Division 1 | Willard H. Murray, Jr., President |
|------------|-----------------------------------|
| Division 2 | Robert Katherman, Secretary       |
| Division 3 | Norm Ryan, Treasurer              |
| Division 4 | Pat Acosta, Director              |
| Division 5 | Albert Robles, Director           |

Robb Whitaker General Manager

Mario Garcia Assistant General Manager/

**Chief Engineer** 

Ted Johnson Chief Hydrogeologist

### Prepared by:

Tony Kirk Senior Hydrogeologist Nancy Matsumoto Senior Hydrogeologist Jason Weeks Senior Engineer

Mat Kelliher Hydrogeologist

Benny Chong Assistant Hydrogeologist Wanjiru Njuguna Assistant GIS Specialist Hélène Mendoza Technical Support Specialist

**APRIL 2005** 

# **Executive Summary**

"To provide, protect and preserve high quality groundwater through innovative, costeffective and environmentally sensitive basin management practices for the benefit of residents and businesses of the Central and West Coast Basins."

#### **WRD Mission Statement**

In 1959, the Water Replenishment District of Southern California (WRD) was formed by the electorate and the State of California to protect and preserve the quantity and quality of the groundwater supplies in the Central and West Coast groundwater basins (CWCB) in Southern Los Angeles County. Today, these basins supply 40 percent of the water used by 4 million people in the region. This constitutes WRD's service area—covering 43 cities in a 420-square mile area.

WRD is responsible for managing and safeguarding these basins. It's focus in on maximizing the groundwater basins' capacity, preserving them for future use, and ensuring high water quality. To that end, the WRD provides this Regional Groundwater Monitoring Report for Water year 2003-2004.

WRD's staff of highly skilled hydrogeologists, engineers, planners, and Geographic Information System (GIS) specialists engage year round in extensive collection, analysis, and reporting of critical groundwater data. They work continually to sample, track, model, forecast, and plan for replenishment and water quality activities to ensure proper groundwater management and to properly plan for the future.

These efforts result in the annual publication of the District's two main reports: the Engineering Survey and Report, issued since 1960, and this Regional Groundwater Monitoring Report, issued since 1973. This year's monitoring report is the most comprehensive report to date. This report presents the latest information on groundwater replenishment activities, groundwater production, groundwater levels, and an extensive section on groundwater quality.

#### **Groundwater Production**

This year's groundwater production increased by 2.7% from the previous year, going from 241,871 acre feet (AF) to 248,334 AF. This nearly matches the average production levels over the past five years of 248,141 AF.

#### **Groundwater Replenishment**

Artificial replenishment at the Montebello Forebay Spreading Grounds totaled almost 103,000 AF. Recycled water made up 44% of the replenishment, while the remainder was made up of imported water, underflow from the San Gabriel Basin and infiltration of rainfall and irrigation.

At the Seawater intrusion barriers, 25,030 AF were injected, most of which was imported water with 3,669 AF being recycled water.

# **Groundwater Quality**

In general, groundwater in the main producing aquifers of the basins is of good quality and is suitable for use now and in the future. Localized areas of marginal to poor water quality exist—primarily on the basin margins and in the shallower and deeper aquifers impacted by seawater intrusion.

Volatile organic compounds (VOC's) primarily perchloroethylene (PCE) and trichloroethylene (TCE) are present in the Central Basin and have impacted many production wells. However, most wells indicate levels of VOC's below enforceable regulatory levels. Those with higher levels require treatment prior to use as drinking water. PCE and TCE have not been detected in any production wells evaluated in this report.

The WRD has taken a proactive approach to protecting the basins in the face of emerging water quality issues. The WRD has determined that the special interest constituents including arsenic, hexavalent chromium, methyl tertiary, butyl ether (MTBE, total organic carbon, color and perchlorate do not pose a substantive threat to the basins at this time.

#### **Challenges Ahead**

The WRD remains committed to its statutory charge to manage the public resource of the basins' storage capacity for the common good. To that end, innovative projects and programs will be implemented to ensure a continued reliable source of high quality groundwater, reduce the reliance on costly imported water, and optimize the region's water resources for the WRD's groundwater users.

The WRD is pursuing a major conjunctive use project to store excess water underground during wet years for use in the future and during droughts; WRD is also working with land owners and regulatory agencies to identify contamination threats and monitor clean-up activities. The WRD is reaching out to elected and public officials throughout the region in an effort to implement these new initiatives to optimize the management of the basins for the benefit of all.

For more information see the WRD web site at <a href="http://www.wrd.org">http://www.wrd.org</a>, or by calling WRD at 562-921-5521. WRD welcomes any comments or suggestions to this Annual Regional Groundwater Monitoring Report.

# TABLE OF CONTENTS

# **Section 1 Introduction**

| 1.1<br>1.2 | Background of the Regional Groundwater Monitoring Program                             |
|------------|---------------------------------------------------------------------------------------|
| 1.2        | GIS Development and Implementation 1-4                                                |
|            | Scope of Report 1-5                                                                   |
|            |                                                                                       |
|            | Section 2                                                                             |
|            |                                                                                       |
|            | Groundwater Replenishment                                                             |
| 2.1        | Sources of Replenishment Water                                                        |
| 2.2        | Quantities of Replenishment Water2-2                                                  |
| 2.3        | Quality of Replenishment Water                                                        |
|            |                                                                                       |
|            | Section 3                                                                             |
|            | Groundwater Production and Water Levels                                               |
| 3.1        | Groundwater Production in the Central and West Coast Basins                           |
| 3.2        | Groundwater Levels and Change in Storage                                              |
|            | Section 4                                                                             |
|            |                                                                                       |
|            | Groundwater Quality                                                                   |
| 4.1        | Major Mineral Characteristics of Groundwater in the Central and West Coast Basins 4-1 |
| 4.2        | Total Dissolved Solids (TDS)                                                          |
| 4.3<br>4.4 | Iron                                                                                  |
| 4.4<br>4.5 | Nitrate 4-6                                                                           |
|            | Hardness                                                                              |
| 4.7        | Sulfate                                                                               |
| 4.8        | Chloride4-9                                                                           |
|            | Trichloroethylene (TCE)4-10                                                           |
|            | Tetrachloroethylene (PCE)                                                             |
| 4.11       | Special Interest Constituents 4-12                                                    |

| 4.11.1 Ar  | rsenic                                                                                           | 4-13 |
|------------|--------------------------------------------------------------------------------------------------|------|
| 4.11.2 Ch  | nromium                                                                                          | 4-15 |
|            | TBE                                                                                              |      |
|            | otal Organic Carbon                                                                              |      |
|            | pparent Color                                                                                    |      |
|            | erchlorate                                                                                       |      |
| 4.12 Conta | aminant Source Identification                                                                    | 4-2  |
|            | Section 5                                                                                        |      |
|            | Summary of Findings                                                                              |      |
| Summary of | of Findings                                                                                      | 5-1  |
| · ·        |                                                                                                  |      |
|            | Section 6                                                                                        |      |
|            | <b>Future Activities</b>                                                                         |      |
| Future Act | tivities                                                                                         | 6-1  |
|            | Section 7 References                                                                             |      |
| References | s                                                                                                | 7-1  |
|            | List of Tables                                                                                   |      |
| Table 1.1  | Construction Information for WRD Nested Monitoring Wells                                         |      |
| Table 2.1  | e e e e e e e e e e e e e e e e e e e                                                            |      |
| Table 2.2  | Historical Quantities of Artificial Replenishment Water at Seawater Intrusion Barriers           |      |
| Table 2.3  | Water Quality of Replenishment Water, Water Year 2003-2004                                       |      |
| Table 3.1  | Historical Amounts of Groundwater Production                                                     |      |
| Table 3.2  | Groundwater Elevations, Water Year 2003-2004                                                     |      |
| Table 4.1  | Major Mineral Water Quality Groups                                                               |      |
| Table 4.2  | Central Basin Water Quality Results, Regional Groundwater Monitoring, Water Year 2003-2004       |      |
| Table 4.3  | West Coast Basin Water Quality Results, Regional Groundwater<br>Monitoring, Water Year 2003-2004 |      |
| Table 4.4  | Priority Contaminated Sites in the Central and West Coast Basins                                 |      |

# **List of Figures**

| Figure 1.1  | Water Replenishment District of Southern California                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------|
| Figure 1.2  | Nested Wells versus Production Wells for Aquifer-Specific Data                                               |
| Figure 1.3  | Existing WRD Nested Monitoring Wells                                                                         |
| Figure 1.4  | Idealized Geologic Cross Section AA'                                                                         |
| Figure 1.5  | Idealized Geologic Cross Section BB'                                                                         |
| Figure 3.1  | Groundwater Production, Water Year 2003-2004                                                                 |
| Figure 3.2  | Groundwater Elevation Contours, Spring 2004                                                                  |
| Figure 3.3  | Groundwater Elevation Contours, Fall 2004                                                                    |
| Figure 3.4  | Monthly Groundwater Production, Water Year 2003-2004                                                         |
| Figure 3.5  | Changes in Groundwater Levels, Spring 2004-Fall 2004                                                         |
| Figure 3.6  | Changes in Groundwater Levels, Fall 2003-Fall 2004                                                           |
| Figure 3.7  | Fluctuations of Water Level at Wells, Montebello Forebay                                                     |
| Figure 3.8  | Fluctuations of Water Level at Wells, Los Angeles Forebay                                                    |
| Figure 3.9  | Fluctuations of Water Level at Wells, Central Basin Pressure Area                                            |
| Figure 3.10 | Fluctuations of Water Level at Wells, West Basin                                                             |
| Figure 3.11 | Fluctuations of Water Level in WRD Nested Monitoring Well - Rio Hondo #1                                     |
| Figure 3.12 | Fluctuations of Water Level in WRD Nested Monitoring Well -<br>Huntington Park #1                            |
| Figure 3.13 | Fluctuations of Water Level in WRD Nested Monitoring Well - Long Beach #1                                    |
| Figure 3.14 | Fluctuations of Water Level in WRD Nested Monitoring Well - Carson #1                                        |
| Figure 4.1  | TDS Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                         |
| Figure 4.2  | TDS Concentrations in Groundwater From Production Wells                                                      |
| Figure 4.3  | Iron Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                        |
| Figure 4.4  | Iron Concentrations in Groundwater From Production Wells                                                     |
| Figure 4.5  | Manganese Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                   |
| Figure 4.6  | Manganese Concentrations in Groundwater From Production Wells                                                |
| Figure 4.7  | Total Nitrate (as Nitrogen) Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004 |
| Figure 4.8  | Total Nitrate (as Nitrogen) Concentrations in Groundwater From Production Wells                              |
| Figure 4.9  | Total Hardness as CaCO3 Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004     |
| Figure 4.10 | Total Hardness as CaCO3 Concentrations in Groundwater From Production Wells                                  |
| Figure 4.11 | Sulfate Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                     |
| Figure 4.12 | Sulfate Concentrations in Groundwater From Production Wells                                                  |
|             | List of Figures (Cont'd)                                                                                     |

| Chloride Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004             |
|-------------------------------------------------------------------------------------------------------|
| Chloride Concentrations in Groundwater From Production Wells                                          |
| TCE Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                  |
| TCE Concentrations in Groundwater From Production Wells                                               |
| PCE Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                  |
| PCE Concentrations in Groundwater From Production Wells                                               |
| Arsenic Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004              |
| Arsenic Concentrations in Groundwater From Production Wells                                           |
| Total Chromium Concentrations in Groundwater; WRD Nested Monitoring Wells, Water Year 2003-2004       |
| Total Chromium Concentrations in Groundwater From Production Wells                                    |
| Hexavalent Chromium Concentrations in Groundwater; WRD Nested Monitoring Wells, 1998-2004             |
| Hexavalent Chromium Concentrations in Groundwater From Production<br>Wells                            |
| MTBE Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                 |
| MTBE Concentrations in Groundwater From Production Wells                                              |
| Total Organic Carbon Concentrations in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004 |
| Total Organic Carbon Concentrations in Groundwater From Production Wells                              |
| Apparent Color in Groundwater: WRD Nested Monitoring Wells, Water Year 2003-2004                      |
| Apparent Color in Groundwater From Production Wells                                                   |
| Perchlorate Concentrations in Groundwater: WRD Nested Monitoring Wells, 1998-2004                     |
| Perchlorate Concentrations in Groundwater From Production Wells                                       |
| Highest Priority Contaminated Sites in the Central and West Coast Basins                              |
|                                                                                                       |

# SECTION 1 INTRODUCTION

The Water Replenishment District of Southern California (WRD or the District) manages groundwater replenishment and water quality activities of the Central and West Coast Basins (CWCB) in southern Los Angeles County (**Figure 1.1**). Our mission is to protect and preserve high-quality groundwater in the basins through innovative, cost-effective, and environmentally sensitive management practices for the benefit of residents and businesses of the Central and West Coast Basins. This mission is being accomplished by meeting WRD goals relating to water quality, water supply, basin management, stakeholder communications, and efficient operations of the organization.

A major aspect to meeting these goals is to have a thorough and current understanding of groundwater conditions in the CWCB and to predict and prepare for future conditions. This is achieved through groundwater monitoring, modeling, and planning, which provide the necessary information to determine the "health" of the basins. This information in turn provides WRD, the pumpers in the District, other interested stakeholders, and the public with the knowledge necessary for responsible water resources planning and management.

# 1.1 BACKGROUND OF THE REGIONAL GROUNDWATER MONITORING PROGRAM

Since its formation in 1959, the WRD has been actively involved in groundwater replenishment, water quality monitoring, contaminant prevention, data management, and data publication. Historical overpumping of the CWCB caused overdraft, seawater intrusion and other groundwater management problems related to supply and quality. Adjudication of the basins in the early 1960s set a limit on allowable production to control the overpumping. Along with adjudication, WRD was formed to address issues of groundwater recharge and groundwater quality. The Regional Groundwater Monitoring Program is an important District program to track water levels and water

quality in the CWCB to ensure the usability of this groundwater reservoir.

Prior to 1995, WRD relied heavily upon groundwater monitoring data collected, interpreted, and presented by other entities such as the Los Angeles County Department of Public Works (LACDPW), the California Department of Water Resources (DWR), and the private sector for understanding current basin conditions. This included WRD's former basinwide monitoring program, and the ongoing but separate Montebello Forebay recycled water monitoring for regulatory compliance. However, these data have been collected primarily from production wells, which are typically screened across multiple aquifers to maximize water inflow. This results in a mixing of the waters from the perforated aquifers inside of the well casing, causing an averaging of the water qualities and water levels.

In order to obtain more accurate data for specific aquifers from which to infer localized water quality and level conditions, depth-specific (nested) monitoring wells that tap discrete aquifer zones are necessary. Figure 1.2 illustrates the capabilities of nested monitoring wells to assess individual aquifers compared to typical production wells. Data are generally provided for a water year (WY), which occurs from October 1 to the following September 30. During WY 1994-1995, WRD and the United States Geological Survey (USGS) began a cooperative study to improve the understanding of the geohydrology and geochemistry of the CWCB. The study was documented in the recently published USGS Water Resources Investigations Report 03-4065, Geohydrology, Geochemistry and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California (Reichard et al. 2003). This study was the nucleus of the Regional Groundwater Monitoring Program. In addition to compiling existing available data, this study recognized that sampling of production wells did not adequately characterize the layered multiple aquifer systems of the CWCB. The study focuses on new data collection through drilling and construction of nested groundwater monitoring wells and conducting depth-specific water quality sampling. Figure 1.3 shows the locations of the WRD nested monitoring well network. Construction details for the WRD wells are presented in **Table 1.1.** 

An Annual Report on the Results of Water Quality Monitoring (Annual Report) was published by the WRD from Water Years 1972-1973 through 1994-1995, and was based on a basinwide monitoring program outlined in the Report on Program of Water Quality Monitoring (Bookman-Edmonston Engineering, Inc., January 1973). The latter report recommended a substantial expansion of the then-existing program, particularly the development of a detailed and intensive program of monitoring the quality of groundwater in the Montebello Forebay. The Regional Groundwater Monitoring Program is designed to serve as an expanded, more representative basinwide monitoring program for the CWCB. This Regional Groundwater Monitoring Report is published in lieu of the previous Annual Reports.

#### 1.2 CONCEPTUAL HYDROGEOLOGIC MODEL

The Regional Groundwater Monitoring Program changes the focus of groundwater monitoring efforts in the CWCB from production zones with averaged groundwater level and groundwater quality information, to a layered multiple aquifer system with individual zones of groundwater quality and groundwater levels. WRD views each aquifer as a significant component of the groundwater system and understands the importance of the interrelationships between water-bearing zones. The most accepted hydrogeologic description of the basin and the names of water-bearing aquifers were provided in California Department of Water Resources, *Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A – Ground Water Geology* (DWR, 1961). WRD generally follows the naming conventions of this report, redefining certain aspects when new data become available.

The locations of idealized geologic cross-sections AA' and BB' through the CWCB are shown on **Figure 1.3**. Cross-sections AA' and BB' are presented on **Figures 1.4** and **1.5**, respectively. These cross-sections illustrate a simplified aquifer system in the CWCB. The main potable production aquifers are shown, including the deeper Lynwood, Silverado, and Sunnyside aquifers of the lower Pleistocene San Pedro Formation. Other main shallower aquifers, which locally produce potable water, include

the Gage and Gardena aquifers of the upper Pleistocene Lakewood Formation. Also shown on the geologic sections are the aquitards separating the aquifers. Throughout this report the aquifers shown on the geologic sections are referred to as discrete groundwater zones. Many references are made to the Silverado aquifer producing zone, which typically includes the Lynwood aquifer.

#### 1.3 GIS DEVELOPMENT AND IMPLEMENTATION

WRD is using a sophisticated geographic information system (GIS) as a tool for CWCB groundwater management. Much of the GIS was compiled during the WRD/USGS cooperative study. The GIS links spatially related information (e.g., well locations, geologic features, cultural features, contaminated sites) to data on well production, water quality, water levels, and replenishment amounts. WRD uses the industry standard ArcGIS® software for data analysis and preparation of spatially related information (maps and graphics tied to data). WRD utilizes global positioning system (GPS) technology to survey the locations of basinwide production wells and nested monitoring wells for use in the GIS database.

WRD is constantly updating the GIS with new data and newly acquired archives of data acquired by staff or provided by pumpers and other agencies. The GIS is a primary tool for WRD and other water-related agencies to more accurately track current and past use of groundwater, track groundwater quality, and project future water demands, thus allowing improved management of the basins.

In early 2003, WRD completed the development of its Internet-based GIS, which was made available to the public. WRD's Internet-based GIS can be accessed through our web site at <a href="http://gis.wrd.org">http://gis.wrd.org</a>. The web site provides the public with access to much of the water level and water quality data contained in this report. The well information can be accessed through either an interactive map or a text search and the resulting data can be displayed in both tabular and graphical formats.

#### 1.4 SCOPE OF REPORT

The purpose of this report is to update information on groundwater conditions in the CWCB for WY 2003-2004, and to discuss the status of the Regional Groundwater Monitoring Program. Section 1 has provided an overview of WRD and the WRD Regional Groundwater Monitoring Program. Section 2 discusses the types, quantities, and quality of different source waters used by WRD for replenishment at the Montebello Forebay spreading grounds and the seawater intrusion barriers. Section 3 summarizes groundwater production in the CWCB, and evaluates water level, storage change, and groundwater elevation data for WY 2003-2004. Section 4 presents water quality data for the WRD nested monitoring wells and basinwide production wells. Section 5 summarizes the findings of this report. Section 6 describes future regional groundwater monitoring activities. Section 7 lists the references used in this report.

#### **SECTION 2**

#### **GROUNDWATER REPLENISHMENT**

Natural groundwater replenishment occurs through the percolation of precipitation and applied waters (such as irrigation), conservation of stormwater in spreading grounds, and underflow from adjacent basins. Although it occurs to an extent within the CWCB, there is insufficient natural replenishment in the CWCB to sustain the groundwater pumping that takes place. Therefore, WRD provides for artificial groundwater replenishment through the purchase of imported and recycled, water to make up the difference. Artificial replenishment occurs at the Rio Hondo and San Gabriel River Spreading Grounds, at the Alamitos Gap, Dominguez Gap, and West Coast Basin Seawater Barriers, and through the District's In-Lieu program. This section describes the sources, quantities, and quality of water used for artificial replenishment in the CWCB during WY 2003-2004.

#### 2.1 SOURCES OF REPLENISHMENT WATER

Replenishment water comes from imported, recycled, and local sources. The types used by WRD are described below:

- Imported water: This source comes from the Colorado River or the State Water Project via Metropolitan Water District (MWD) pipelines and aqueducts. WRD purchases this water both for surface recharge at the Montebello Forebay spreading grounds and for injection at the seawater intrusion barriers. For the spreading grounds, the water is replenished without further treatment from the sources, as the source quality is high and the water is treated naturally as it percolates through the vadose zone soils. For the seawater barrier wells, the water is treated to meet all drinking water standards before injection, since it will not be moving through vadose zone soils. Spreading water is available seasonally from MWD if they have excess reserves, whereas a premium price is paid for non-interruptible injection water at the barriers to maintain deliveries throughout the year and during droughts.
- Recycled water: This resource's relatively low unit cost and good quality coupled

with its year-round availability makes it highly desirable as a replenishment source. However, its use is limited by regulatory agencies. Tertiary-treated recycled water is used for replenishment at the spreading grounds. Tertiary-treated recycled water followed by additional microfiltration and reverse osmosis treatment is used for injection into the West Coast Basin Barrier Project, and will soon be used at the Dominguez Gap and Alamitos Barrier Projects.

- Make-Up Water: "Make-Up Water" is occasionally delivered to the Montebello Forebay spreading grounds from the Main San Gabriel Basin. This water, termed the "Lower Area Annual Entitlement", was established in accordance with the judgment in Case No. 722647 of Los Angeles County, City of Long Beach, et al vs. San Gabriel Valley Water Co., et al (Long Beach Judgment). During WY 2003-2004, Make-Up Water was not delivered to the Lower Area.
- <u>Local water</u>: Local water consists of channel flow from local sources (e.g., storm-flow, rising water, incidental surface flows) conserved in the Montebello Forebay spreading grounds by the LACDPW. Precipitation falling on the basin floor and water applied to the ground (such as for irrigation) are also considered to be local water as they also percolate into the subsurface and contribute to recharge.
- <u>Subsurface water:</u> Groundwater flows into and out of the CWCB from adjacent groundwater basins (Santa Monica, Hollywood, Main San Gabriel, Orange County) and the Pacific Ocean. The amounts of inflow and outflow depend on the hydrogeologic properties of the aquifers and the groundwater gradients at the basin boundaries.

### 2.2 QUANTITIES OF REPLENISHMENT WATER

Current and historical quantities of water conserved (replenished) in the Montebello Forebay spreading grounds are presented in **Table 2.1**. Current and historical seawater barrier well injection amounts are shown on **Table 2.2**. The calculations required to determine the total quantity of artificial replenishment water necessary for the CWCB prior to each water year are outlined in the District's annual *Engineering Survey and Report* (ESR).

At the Montebello Forebay spreading grounds (**Table 2.1**), the following is noted for the quantities of replenishment water for WY 2003-2004:

- Total water conserved in the Rio Hondo System (consisting of the Rio Hondo Spreading Grounds and percolation behind the Whittier Narrows Dam) and the San Gabriel System (consisting of the unlined San Gabriel River south of the Whittier Narrows Dam and the San Gabriel River Spreading Grounds) was 102,911 acre-feet (AF). This is less than the historical running average of 126,186 AF (WY 1963-64 through 2002-03).
- The quantity of local water conserved during WY 2003-2004 was 30,467 AF, less than the historical running average of 49,094 AF, and less than the previous 5-year average of 33,364 AF (WY 1999-00 through 2002-03).
- The quantity of imported water conserved during WY 2003-2004 was 27,520 AF. This is less than the long-term running average of 44,654 AF, and more than the previous 5- year average of 26,424 AF.
- The quantity of recycled water conserved during WY 2003-2004 was 44,924 AF. This is more than the long-term running average of 32,438 AF but less than the previous 5-year average of 46,271 AF.
- In addition to the water sources shown on **Table 2.1**, the Montebello Forebay received an estimated 3,665 AF of recharge due to infiltration of precipitation falling on the forebay floor, and an estimated 26,400 AF of groundwater underflow from San Gabriel Valley. The total replenishment was therefore 132,976 AF, of which 34% was recycled water. The three-year average recycled water used was 49,387 AF, and the three-year averaged percent recycled water component was 33.9%.

At the seawater intrusion barriers (**Table 2.2**), the following trends are noted for the quantities of artificial replenishment water for WY 2003-2004:

- At the West Coast Basin Barrier, 12,973 AF were injected, which included 9,304 AF of imported water and 3,669 AF of recycled water (28%). The current limit for recycled water injection is 50% of the total supply. The long-term injection average from WY 1963-64 through 2003/04 was 20,470 AF. The 5-year average (1999-00 through 2002-03) was 17,808 AF. Injection amounts were lower in 2003-2004 for several reasons; the DPW is installing a telemetry system at the barrier which required suspending injection for several months, WRD requested some reductions due to localized over-injection, and WBMWD had difficulty producing recycled water due to influent quality from the Hyperion Plant source.
- At the Dominguez Gap Barrier, 6,089 AF were injected. The long-term average from WY 1970/71 through 2003/04 was 5,940 AF, and the 5-year average (1999-00 through 2002-03) was 5,907 AF. To date, only imported water has been injected at the Dominguez Gap Barrier; however, WRD and the City of Los Angeles plan to augment this source with recycled water in the near future. The DPW has recently installed 33 new wells at the Dominguez Gap and expects injection amounts could double.
- At the Alamitos Barrier, both WRD and Orange County Water District (OCWD) provide injection water; WRD for wells on the Los Angeles County side, and OWCD for wells on the Orange County side. During WY 2003-2004 a total of 5,968 AF were injected into the barrier system, 3,876 by WRD and 2,092 by OCWD. The long-term average from WY 1964-65 through 2003-04 was 5,115 AF, and the 5-year average (1999-00 through 2003-04) was 5,603 AF. To date, only imported water has been injected at the Alamitos Barrier; however, WRD plans to augment this source with recycled water in the near future.

## 2.3 QUALITY OF REPLENISHMENT WATER

This section discusses water quality data for key parameters in WRD replenishment water and local surface water. Although numerous other constituents are monitored, the

constituents reported here are the ones found to be most prevalent and at elevated levels or of current regulatory interest in wells in the CWCB. The data are classified according to their sources. The key water quality parameters of this discussion are: total dissolved solids (TDS), hardness, sulfate, chloride, nitrogen, iron, manganese, trichloroethylene (TCE), tetrachloroethylene (PCE), total organic carbon (TOC), and perchlorate. Monitoring the concentrations of these constituents is necessary for an understanding of the general chemical nature of the recharge source, and its suitability for replenishing the groundwater basins. A brief description of each parameter follows. Various criteria are used in discussing water quality. An Action Level (AL) is a non-regulatory health-based advisory level established by the California Department of Health Services (DHS) based on preliminary review of health effects studies for which enforceable levels have not been established. Effective January 1, 2005, AL's have been replaced with Notification and Response Levels per California Health and Safety Code Section 116455. Since this report presents data prior to this effective date, references to AL's are still use din this report. A Public Health Goal (PHG) is an advisory level that is developed by the Office of Environmental Health Hazard Assessment (OEHHA) after a thorough review of health effects and risk assessment studies. A Primary Maximum Contaminant Level (MCL) is an enforceable drinking water standard that DHS establishes after health effects, risk assessments, detection capability, treatability and economic feasibility are considered. A Secondary MCL is established for constituents that impact aesthetics of the water, such as taste, odor, and color, and do not impact health. It should also be noted that constituents with ALs often are considered unregulated contaminants for which additional monitoring may be required to determine the extent of exposure before PHG's and MCLs are established.

- <u>Total Dissolved Solids (TDS)</u>: TDS is a measure of the total mineralization of water and is indicative of general water quality. In general, the higher the TDS, the less desirable a given water supply is for beneficial uses. The (secondary) MCL for TDS ranges from 500 milligrams per liter (mg/L), which is the recommended level, to 1,500 mg/L, which is the upper limit allowed for short-term use.
- Hardness: For most municipal uses, hardness (a measure of calcium and magnesium

ions that combine with carbonates to form a precipitate or solid substance in water) is an important mineral characteristic of water. Some degree of hardness is considered to be beneficial to human health; studies suggest that it helps to lower cholesterol levels. Excessive hardness is undesirable because it results in increased consumption of cleaning products, scale on pipes, and other undesirable effects. There is no MCL for hardness, but generally waters are considered soft when it is less than 75 mg/L and very hard when greater than 300 mg/L.

- <u>Sulfate</u>: Sulfate is generally not a water quality concern in the CWCB. In excess amounts, it can act as a laxative. DHS has established a Secondary MCL for sulfate at 250 mg/L and up to 600 mg/L for short-term use. Sulfate is, however a very useful water quality constituent in the CWCB for use in tracking flow and observing travel times of artificial recharge water. Colorado River water and recycled water used for recharge in CWCB have characteristically high sulfate concentrations, while native groundwater and State Water Project water have relatively low sulfate concentrations.
- Chloride: Chloride in reasonable concentrations is not harmful to human health. It is the characteristic constituent used to identify seawater intrusion. While recharge sources contain moderate concentrations of chloride, these concentrations are well below the Secondary MCL for chloride of 250 mg/L. Water containing chloride concentrations above this level begins to taste salty. When the ratio of chloride to other anions such as sulfate and bicarbonate becomes high, there is a strong indication of seawater intrusion or possible industrial brine impact to groundwater.
- <u>Nitrogen species:</u> DHS standards limit two forms of nitrogen, nitrite and nitrate, in drinking water. Nitrate cannot exceed concentrations of 45 mg/L (measured as Nitrate), corresponding to 10 mg/L as Nitrogen. Nitrite is limited to 1 mg/L as Nitrogen. The combined total of nitrite and nitrate cannot exceed 10 mg/L. These constituents are of concern because they can cause anoxia in infants. When consumed in excess of these limits, they reduce the uptake of oxygen causing shortness of breath, lethargy, and a bluish color. Continued exposure to these constituents in excess of the limits can be fatal.
- <u>Iron:</u> Typically, iron occurs naturally in groundwater. It is also leached from minerals or steel pipes as rust. Small concentrations of iron in water can affect the

water's suitability for domestic or industrial purposes. DHS limits the amount of iron in drinking water to 0.3 mg/L because iron in water stains plumbing fixtures and clothing, incrusts well screens, and clogs pipes and may impart a salty taste. It is considered an essential nutrient, important for human health, and does not pose significant health effects except in special cases. Some industrial processes cannot tolerate more than 0.1 mg/L iron.

- Manganese: Manganese, also naturally occurring, is objectionable in water in the same general way as iron. Stains caused by manganese are black and are more unsightly and harder to remove than those caused by iron. The DHS MCL for manganese is 50 micrograms per liter (μg/L). Like iron it is considered an essential nutrient for human health.
- TCE: Trichloroethylene is a solvent used in metal degreasing, textile processing, and dry cleaning. Because of its potential health effects, it has been classified as a probable human carcinogen. The MCL for TCE in drinking water is 5 µg/L.
- <u>PCE</u>: Tetrachloroethylene (also known as perchloroethylene, perc, perclene, and perchlor) is a solvent used heavily in the dry cleaning industry, as well as in metal degreasing and textile processing. Like TCE, PCE is a probable carcinogen. The MCL for PCE in drinking water is 5 μg/L.
- Total Organic Carbon: Total organic carbon (TOC) is the broadest measure of all
  organic molecules in water. TOC can be naturally occurring, wastewater-derived, or
  a combination of both (National Research Counsel, 1998). While there is no MCL
  established for TOC, regulators are generally concerned with wastewater derived
  TOC as a measurable component of recycled water.
- Perchlorate: This is used in a variety of defense and industrial applications, including being a primary ingredient in solid propellant for rockets, missiles, road flares, and fireworks, a component of air bag inflators, additives in lubricating oils, in tanning and finishing leather, and the production of paints and enamels. When ingested, it can inhibit the proper uptake of iodide by the thyroid gland, which causes a decrease in hormones for normal growth and development and normal metabolism. The DHS action level was revised on March 11, 2004 to 6 μg/L. Effective January 1, 2005, this action level for perchlorate is now referenced as the perchlorate notification level.

## **Quality of Imported Water**

As stated previously, treated imported water is used at the seawater intrusion barriers. This water meets all drinking water standards and is suitable for direct injection. Average water quality data for treated imported water are presented in **Table 2.3**.

Untreated imported water ("raw water") is used for recharge at the Montebello Forebay spreading grounds. The average TDS concentration of Colorado River water has decreased over recent Water Years, from 682 mg/L to 593 mg/L. The average TDS concentration of State Project Water has also shown a modest decreasing trend, from 320 mg/L to 242 mg/L.

The average hardness of Colorado River water has also decreased over recent years, from 322 mg/L to 288 mg/L. The average hardness of untreated State Project Water has also shown a decreasing trend, from 173 mg/L to 99 mg/L.

The average nitrogen concentration of Colorado River water has decreased from the previous reported water year, dropping from 0.23 mg/L to below detection limits. The average nitrogen concentration of State Project Water has increased over the previous reported water year, from 0.54 mg/L to 0.70 mg/L. Recently and historically, both Colorado River and State Project Water nitrogen concentrations have been far below the MCL.

The average iron concentrations of untreated Colorado River Water have remained below detection limits. Iron in State Project Water was 0.124 mg/L. Manganese in State Project water averaged 22  $\mu$ g/L. Both Colorado River and State Project Water iron and manganese concentrations have historically been below the MCL.

The average chloride and sulfate concentrations of Colorado River Water and State Project Water have not changed significantly over the past several years. Both Colorado River and State Project Water chloride and sulfate concentrations have historically been below their respective MCLs.

According to the MWD, TCE and PCE have not been detected in Colorado River Water or State Project Water during the reporting period.

### **Quality of Recycled Water**

Recycled water is introduced into the CWCB through percolation and injection. In the Montebello Forebay, Recycled water from the Whittier Narrows Water Reclamation Plant (WRP), San Jose Creek East WRP, San Jose Creek West WRP, and Pomona WRP is diverted into spreading basins where it percolates into the subsurface. The water quality from these WRPs is carefully controlled and monitored, as required by permits, and typically shows little variation over time. **Table 2.3** presents average water quality data from these WRPs. All constituents listed have either decreased slightly or remained stable over recent water years. Furthermore, neither TCE nor PCE have been detected above their MCLs in recycled water from these four WRPs over the last four water years.

Recycled water from the West Basin Municipal Water District (WBMWD) WRP undergoes advanced treatment using microfiltration and reverse osmosis, is blended with imported water, and is then injected at the West Coast Basin barrier. This water is treated to meet or exceed drinking water standards and is suitable for direct injection. The blend of recycled water and imported water is injected to prevent the intrusion of salt water and to replenish the groundwater basins. The DHS presently limits injection of recycled water to 50 percent of the total injected amount. However, the WBMWD, working with the DHS and WRD, are seeking to increase the recycled water percentage to 100 percent recycled water in the future. **Table 2.3** presents average water quality data for this injected recycled water.

# **Quality of Stormwater**

As discussed in Section 2.1, stormwater infiltrates to some degree throughout the District. In the Montebello Forebay, it is intentionally diverted from the major storm channels and percolated along with imported and recycled water at local spreading grounds. Periodic

stormwater quality analyses have been performed by LACDPW throughout the history of operations at the Montebello Forebay spreading grounds. Average stormwater quality data are presented on **Table 2.3**. The average TDS, hardness, sulfate, chloride, nitrate, TCE, and PCE concentrations of stormwater in the Montebello Forebay are relatively low.

#### **SECTION 3**

#### GROUNDWATER PRODUCTION AND WATER LEVELS

Groundwater production (pumping) is the major source of groundwater outflow from the CWCB. Groundwater currently provides about 40% of the total water used in the basins. It is critical to maintain adequate supplies of groundwater in storage to meet this demand and to protect against times of drought when imported water may not be available. Measurements of water levels in the basins are performed to check the current supply and are used to determine when artificial replenishment is needed. The remainder of this Section describes WRD's management of groundwater production and water levels in the CWCB.

# 3.1 GROUNDWATER PRODUCTION IN THE CENTRAL AND WEST COAST BASINS

Prior to the 1960s, groundwater production in the CWCB went relatively unchecked and continued to increase as the population increased. West Coast Basin pumping reached a maximum of 94,100 AF in 1952-53, and Central Basin pumping reached a maximum of 259,400 AF in 1955-56 (DWR, 1962). Pumping exceeded natural recharge, resulting in overdraft, declining water levels, loss of groundwater from storage, and seawater intrusion.

In the early 1960s, the State courts limited the amount of pumping in the CWCB to reduce the overdraft. The West Coast Basin adjudication was finalized in 1961 and capped production at 64,468.25 acre-feet/year (AFY). The Central Basin adjudication rights were set at 271,650 AFY, although the Judgment set a lower Allowed Pumping Allocation (APA) of 217,367 AFY. The total amount that can be pumped from both basins is currently 281,835 AFY.

The adjudicated amounts were set higher than the natural replenishment of the CWCB.

WRD was created in 1959 to manage this deficiency through artificial replenishment. A replenishment assessment is placed on production to collect the funds necessary to purchase the supplemental replenishment water.

During WY 2003-2004, groundwater production in the CWCB was 248,334 AF, of which 200,332 AF occurred in the Central Basin and 47,965 AF occurred in the West Coast Basin. This represents a 2.7% increase from the previous year. The five-year averaged production amount is 248,141 AF (WY 1999-00 through 2003-04). **Table 3.1** presents historical groundwater production quantities for the CWCB. **Figure 3.1** illustrates the levels of production throughout the CWCB during the 2003-2004 Water Year.

Under the terms of the Water Replenishment Districts Act, each groundwater producer in the CWCB must submit a report to the District summarizing their production activities (monthly reports for large producers, quarterly reports for small producers). The information in these reports is the basis from which each producer pays the replenishment assessment. WRD then forwards these production data to the DWR, the court-appointed Watermaster, in connection with the adjudication of the CWCB.

With few exceptions, meters installed and maintained by the individual producers measure groundwater production throughout the basins. Through periodic testing, both WRD and Watermaster verify the accuracy of individual meters and order corrective measures when necessary. The production of the few wells that are not metered is estimated on the basis of electrical energy consumed by individual pump motors, duty of water, or other reasonable means.

WRD's In-Lieu Replenishment Program, which replaces groundwater pumping with the use of imported water to reduce the overdraft of the basins, was suspended in 2003-04 to evaluate its effectiveness. For 2004-05, the Board has approved a limited scale In-Lieu Program of 10,303 AF.

During emergency or drought conditions, WRD can also allow an additional 27,000 AF of extractions (17,000 AF for Central Basin and 10,000 AF for West Coast Basin) for a four-month period. This provision has yet to be exercised but offers the potential use of an additional 7.8% of groundwater for Central Basin and 15% of groundwater for West Coast Basin pumpers.

#### 3.2 GROUNDWATER LEVELS AND CHANGE IN STORAGE

Groundwater levels in the CWCB are tracked by the WRD through the collection of water level measurements in production wells and monitoring wells. Automatic datalogging equipment is installed in selected monitoring wells to collect water levels up to four times per day to capture the daily and seasonal changes in water levels due to local and regional pumping. WRD staff visit these and other monitoring wells at least four times per year to collect manual readings and to download the dataloggers. Staff also obtains records from other agencies such as the pumpers, the DWR, and the LACDPW, who regularly collect water level data from wells. These data are input into WRD's GIS for storage and analysis. Contour maps and hydrographs are prepared to illustrate the current and historical groundwater levels in the basins. The change in groundwater storage is determined based on water level changes over the year.

### 3.2.1 Contour Maps

Groundwater elevation contour maps show the elevation of the water surface (potentiometric surface) in the aquifer system at a given period of time, typically spring or fall. These maps are used to determine groundwater flow directions and hydraulic gradients, identify areas of recharge and discharge, identify potential pathways for seawater intrusion, and can be used to calculate the changes in water levels and groundwater storage from one year to the next.

WRD has prepared contour maps representing the "Deep Aquifer System", which includes the San Pedro Formation aquifers (Lynwood/400-Foot Gravel, Silverado, and Sunnyside/Lower San Pedro). **Figures 3.2 and 3.3** are groundwater elevation contour

maps for Spring and Fall 2004, respectively. Based on these maps, groundwater levels are highest in the northeastern corner of the Montebello Forebay, where Main San Gabriel Basin groundwater flows into the Central Basin and artificial recharge is performed. Groundwater levels are lowest in several areas, including Long Beach near the city's airport and in the West Coast Basin along the Newport-Inglewood uplift in the City of Gardena. Groundwater flow in the basins moves from recharge or high elevation areas to discharge or low elevation areas. In the Central Basin, groundwater generally moves in a southwesterly direction away from the Montebello Forebay recharge area, and then splits to flow both in a southerly direction toward Long Beach and a westerly direction toward Huntington Park and Los Angeles. In the West Coast Basin, groundwater generally moves in an easterly direction away from the West Coast Basin Barrier Project. The Newport-Inglewood uplift and the Charnock Fault both act as partial barriers to groundwater flow.

In addition to the relatively high summer water demands, MWD's seasonal storage program provides some pumpers with an incentive to pump more groundwater from May through September, and less from October through April. **Figure 3.4** illustrates the monthly pumping amounts for WY 2003-2004. As shown in the figure, pumping in the West Coast Basin does not fluctuate seasonally as much as in the Central Basin. Between October 2003 and April 2004, production in the Central Basin averaged 14,632 AF/month and in the West Coast Basin 3,846 AF/month. However, between May 2004 and September 2004, Central Basin pumping averaged 19,581 AF/month and in the West Coast Basin 4,209 AF/month. The result of this unsteady seasonal pumping causes groundwater levels to vary dramatically from spring to fall, especially in the confined Central Basin aquifers. **Figure 3.5** is a map showing the difference in water levels between Spring and Fall 2004 generally caused by this seasonal pumping. The biggest impact is in the Long Beach area along the Newport-Inglewood Uplift, where Fall water levels are 60 feet to 100 feet lower than Spring water levels.

The change in water levels over the course of the year are shown on **Figure 3.6**, which is a water level change map between Fall 2003 and Fall 2004 for the Silverado Aquifer

(main production aquifer). As shown in the figure, water level changes in the Central Basin ranged from a 30-40 foot drop in the Long Beach area along the Newport-Inglewood Uplift to a 1-5 foot rise in the northwest along the Baldwin Hills. Over most of the Central Basin water levels decreased. The 30-40 foot drop observed in the Long Beach area is attributed primarily to increased groundwater pumping in that area. The 10-20 foot drop observed in the Montebello Forebay is attributed to below normal spreading due to a low rainfall year. In the West Coast Basin water levels increased slightly or did not change significantly. Water levels dropped near the West Coast Barrier because of lower amounts of injection from temporary barrier shutdowns due to telemetry equipment installation and to minimize overinjection. The relative stability in the West Coast Basin is attributed to a well-managed artificial replenishment program via the West Coast Basin Barrier Project and the Dominguez Gap Barrier Project, and that inflows generally equaled outflows in the upper San Pedro Formation aquifers.

## 3.2.2 Hydrographs

Hydrographs show the changes in water levels in wells over time. WRD uses hydrographs to evaluate basin storage, to determine when to purchase replenishment water, for drought preparedness, and to observe how the basins and aquifers respond to both seasonal and long-term recharge and discharge events.

**Figures 3.7 through 3.10** are long-term hydrographs of key wells used in the District's annual Engineering Survey and Report that show water levels dating back to the 1930s and 1940s in the Montebello Forebay, Los Angeles Forebay, Central Basin Pressure Area, and West Coast Basin, respectively. **Figure 3.2** shows the locations of these key wells. The long-term key well hydrographs illustrate the general history of groundwater conditions in the CWCB: 1) Water levels declined steadily in the 1940s and 1950s due to groundwater overdraft, causing seawater intrusion and significant removal of groundwater from storage; 2) The severe overdraft condition led to the adjudication of the CWCB in the early 1960s, and the formation of WRD to purchase and deliver artificial replenishment water for the spreading grounds, seawater barrier wells, and through in-lieu replenishment; 3) Reduction in pumping and artificial replenishment

caused groundwater levels to rise in the CWCB (although not to their historic highs), allowing a return of groundwater to storage; and 4) Through the early to late 1990s, water levels remained relatively stable, but over the past 5 years have declined in the Central Basin. Seasonal variations due to MWD's seasonal storage program have produced water level fluctuations exceeding 100 feet in the confined aquifers between Spring and Fall, such as is illustrated in the Long Beach area (Figure 3.9). In the West Coast Basin, water levels in key wells have increased somewhat over the past 3 years (Figure 3.10).

Annual hydrographs are also used to obtain a more detailed picture of aquifer-specific water level changes over the water year. The data for these annual hydrographs are collected from WRD's nested monitoring wells that were constructed by the USGS. Figure 1.3 shows the locations of WRD's nested monitoring wells. Table 3.2 presents the manual groundwater elevation measurements collected from nested monitoring wells during Water Year 2003-2004. Figures 3.11 through 3.14 are annual hydrographs of selected WRD nested monitoring wells showing data for WY 2003-2004. These data demonstrate the elevation differences between individual aquifers at each nested well location. The differences in elevation are caused primarily by the thickness and hydraulic conductivity of aquitards (if any) that separate the aquifers, the amount and depth of pumping, and the proximity to recharge sources. Information from selected monitoring wells is presented below:

Figure 3.11 – Rio Hondo #1: This nested well is located in the Montebello Forebay in the City of Pico Rivera at the southeast corner of the Rio Hondo spreading grounds. It has six individual wells (zones) screened in the Gardena, Lynwood, Silverado, and Sunnyside (three different zones) aquifers from depths of 160 feet below ground surface (bgs) to 1,130 feet bgs. In WY 2003-2004, water levels in Zone 4, representing the Silverado Aquifer, varied about 27 feet throughout the year, from an elevation high of 70 feet (mean sea level, msl) in March 2004 to an elevation low of about 43 feet (msl) in September 2004. All six zones generally follow the same trend throughout the year, with lows in the fall and highs in the spring, consistent with natural and artificial recharge patterns. With the exceptions of Zones 2 and 3 (both in the Sunnyside aquifer) which

have nearly identical elevation heads throughout the year, there are several feet of vertical head differences between aquifers. Elevation heads are lowest in Zone 4, the Silverado Aquifer, suggesting that this aquifer is the most heavily pumped in the area. Because it has the lowest head, it should be expected to receive recharge waters from aquifers above and below.

Figure 3.12 - Huntington Park #1: This nested well is located in the Los Angeles Forebay in the City of Huntington Park southeast of the intersection of Slauson Avenue and Alameda Street. It has 5 individual wells (zones) screened in the Gaspur, Exposition, Gage, Jefferson, and Silverado Aquifers, from depths of 134 feet bgs to 910 feet bgs. Only 4 zones are shown on the Figure because the shallowest well (screened from 114 feet to 134 feet in the Gaspur Aquifer) is dry, and therefore no water elevations can be shown on the graph. In WY 2003-2004, water levels in Zone 1, representing the Silverado Aquifer, varied about 10 feet throughout the year, from an elevation high of 27 feet below sea level in April 2004 to an elevation low of about 37 feet below sea level during the fall of 2004. Water levels of the deepest 3 zones generally followed the same trend throughout the year, with lows in the late summer and fall and highs in the winter and spring, consistent with natural recharge pattern. Water levels in Zone 4, the Exposition Aquifer, had only relatively minor fluctuations throughout the year, and occur at elevations from 40 to 53 feet higher than the deeper zones, suggesting little interconnectivity with the lower aquifers.

Figure 3.13 - Long Beach #1: This nested well is located in the Central Basin Pressure Area in the City of Long Beach, about a half mile south of the intersection of the 605 Freeway and Willow Street. It has 6 individual wells (zones) screened in the Artesia, Gage, Lynwood, Silverado and Sunnyside (2 zones) Aquifers, with depths ranging from 175 feet bgs to 1,450 feet bgs. In WY 2003-2004, water levels in Zone 3, representing the Silverado Aquifer, varied about 60 feet throughout the year, from an elevation high of about 22 feet below sea level in April 2004 to an elevation low of about 82 feet below sea level in September 2004. The large variation is due to the seasonal pumping patterns and confined aquifer conditions previously discussed. Water levels of the six zones generally

followed the same trend throughout the year, with lows in the late summer and fall and highs in Spring. An abrupt decrease in water levels began in late April to early May as seasonal pumping commenced. A similar rebounding effect is expected in October when pumping is reduced. Elevation head is lowest in Zone 3, the Silverado Aquifer, suggesting that this aquifer is the most heavily pumped in the area. Because Zone 3 has the lowest head, it should be expected to receive recharge waters from aquifers above and below the Silverado.

**Figure 3.14 - Carson #1**: This nested well is located in the West Coast Basin in the City of Carson, about 1.5 miles northwest of the intersection of the 405 Freeway and Alameda Street. It has 4 individual wells (zones) screened in the Gage, Lynwood, Silverado, and Sunnyside Aquifers from depths of 270 feet bgs to 1,110 feet bgs. In WY 2003-2004, water levels in Zone 2, representing the Silverado Aquifer, varied about 6 feet throughout the year, from a low of about 61 feet below sea level in December 2003 to an elevation high of 55 feet below sea level in August 2004. Water levels in Zones 1 and 2 track very similarly throughout the year, as do Zones 3 and 4. A 31 to 39-foot difference in groundwater elevations between the upper two zones and lower two zones suggests that a significant aquitard exists between them.

### 3.2.3 Change In Storage

Groundwater enters the CWCB through natural and artificial replenishment, and leaves primarily through pumping. If the amount entering the basin equals the amount leaving, then water levels remain relatively unchanged and the basin is at "steady state". When the amount of groundwater entering exceeds the amount leaving, water levels rise and there is an increase in the amount of groundwater in storage. Conversely, when groundwater leaving the basins exceeds the amount entering, water levels drop and the amount in storage is reduced.

The change in groundwater storage over the course of a water year can be determined by calculating water level changes and multiplying those values by the aquifers' storage coefficients. Water level changes were obtained from WRD's nested monitoring wells,

which have isolated screens in each of the four major aquifer systems in the CWCB (Gaspur, Gage/Gardena, Lynwood/Silverado, and Sunnyside/Lower San Pedro). The water level changes were brought into the GIS and converted into grided surfaces so that they could be multiplied by the storage coefficient values determined by the USGS in their calibrated computer model of the basins (Reichard et al, 2003). Storage changes are relatively small in the deeper confined aquifers because they are fully saturated and storage coefficients are generally small (averaging about 0.0005). The most significant storage change occurs in the forebay areas, which have unconfined conditions with specific yield values from about 0.075 to 0.15. Based on the calculation, approximately 43,000 AF of water was lost from storage in the CWCB during the WY 2003-2004. This was the sixth consecutive year of water level declines and storage loss due to drought. Nearly 200,000 acre-feet have been lost from storage since the 1997-1998 water year. The result of this past water year's loss from storage can be seen on the change in water level map (Figure 3.6). In the forebays, water level decline averaging about 8 feet (Montebello Forebay) and 3 feet (Los Angeles Forebay) were observed.

#### **SECTION 4**

#### **GROUNDWATER QUALITY**

This section discusses the vertical and horizontal distribution of several key water quality parameters based on data from WRD's monitoring wells for Water Year 2003-2004 and purveyor's production wells for Water Years 2001-2004. Groundwater samples from nested wells were submitted to a DHS certified laboratory for analytical testing for general water quality constituents, known or suspected contaminants, and special interest constituents. Water quality data for production wells were provided by the DHS based on results submitted over the past three years by purveyors for their Title 22 compliance. Figures 4.1 through 4.32 are maps which present water quality data for key parameters and special interest constituents in the WRD nested monitoring wells and production wells in the CWCB. The figures present the maximum values for data where more than one result is available over the time frame. Table 1.1 presents well construction information and aquifer designations for WRD wells. Table 4.1 categorizes groundwater at the WRD wells into major mineral water quality groups. Table 4.2 lists the water quality analytical results for the wells in the Central Basin during WY 2003-2004. **Table 4.3** lists the water quality analytical results for the wells in the West Coast Basin during WY 2003-2004.

### 4.1 MAJOR MINERAL CHARACTERISTICS OF GROUNDWATER IN THE CENTRAL AND WEST COAST BASINS

Major minerals data obtained from laboratory analyses were used to characterize groundwater from discrete vertical zones of each WRD well (**Table 4.1**). Research by the USGS has provided three distinct groupings of groundwater compositions. Group A groundwater is typically calcium bicarbonate or calcium bicarbonate/sulfate dominant. Group B groundwater has a typically calcium-sodium bicarbonate or sodium bicarbonate character. Group C has a sodium chloride character. A few of the WRD wells yield groundwater samples which do not fall into one of the three major groups and are grouped separately.

Groundwater from Group A likely represents recent recharge water containing a significant percentage of imported water. Groundwater from Group B represents older native groundwater replenished by natural local recharge. Groundwater from Group C represents groundwater impacted by seawater intrusion or connate saline brines. **Table 4.1** lists the groundwater group for each WRD nested monitoring well sampled during WY 2003-2004. Comparison of groundwater groups with well locations indicates that, in general, Group A groundwater is found at and immediately down-gradient from the Montebello Forebay spreading grounds in all but the deepest zones. Group B groundwater is found farther down the flow path of the Central Basin and inland of the salt water wedge and injected water in the West Coast Basin. Group C water is generally found near the coastlines. Several wells, grouped as "Other" on **Table 4.1**, exhibit a chemical character range different from Group A, B, and C ranges and represent unique waters not characteristic of the dominant flow systems in the basins. The USGS is currently conducting trace element isotope analyses of water from these wells to identify their hydrogeologic source(s).

The major mineral compositions of water from the WRD nested monitoring wells sampled this water year have not changed substantially from previous years. It is expected that continued analysis will show gradual changes in major mineral compositions over time, as older native water is extracted from the basins and replaced by younger artificially replenished water.

#### **4.2** TOTAL DISSOLVED SOLIDS (TDS)

As described in Section 2.3, TDS is a measure of the total mineralization of water. It represents the overall mineral content of the water and usually is the first indicator used in assessing the quality of the water. The State DHS has established a recommended secondary standard of 500 mg/L and an upper limit of 1,000 mg/L for short-term use. Exceeding the upper limit is not considered a health hazard, but high TDS levels can impart a salty taste.

WRD nested monitoring well data for WY 2003-2004 indicate relatively low TDS concentrations for groundwater in the deeper producing aquifers of the Central Basin (**Figure 4.1**). TDS concentrations in the Central Basin ranged from 170 mg/L in Lakewood #1 zone 1, to 2,800 mg/L in Whittier #1 zone 1. In the Central Basin, Silverado Aquifer zones in 16 out of 21 WRD nested monitoring wells had very low TDS concentrations, below 500 mg/L. The Silverado aquifer zones in all 21 Central Basin wells tested contained less than the DHS upper limit for TDS of 1,000 mg/L. Generally, TDS concentrations above 1000 mg/L were limited to localized very deep or very shallow zones of Whittier #1, Inglewood #2, Long Beach #1, Long Beach #2, and Montebello #1.

In contrast, West Coast Basin nested monitoring well data show generally higher TDS concentrations. TDS in WRD nested monitoring wells in the West Coast Basin ranged from 200 mg/L in Carson #1 zone 1, to 12,000 mg/L in PM-4 Mariner zone 2. Only the most inland nested monitoring wells, Carson #1, Carson #2, Gardena #1, and Gardena #2 indicate TDS values below 500 mg/L consistently for all zones below the shallowest. Wilmington #1 and Wilmington #2, located near the Dominguez Gap Seawater Intrusion Barrier have significantly high TDS values, each with elevated TDS in multiple zones, including Silverado aquifer zones. Many zones of the Inglewood #1, Long Beach #8, and Lomita # 1 nested monitoring wells exceed 750 mg/L with one or more zones greater than 1,000 mg/L.

**Figure 4.2** presents DHS water quality data for TDS in production wells across the CWCB during WYs 2001-2004. In the Central Basin, TDS generally ranged between 250 and 750 mg/L over most of the basin. In a localized area along the San Gabriel River in the general vicinity of and downgradient of the Rio Hondo and San Gabriel River spreading grounds, many wells had TDS concentrations between 500 and 750 mg/L. A few wells in this area contained TDS in excess of 750 mg/L. Data from many of the production wells in the southernmost portion of the Central Basin indicated TDS less than 250 mg/L.

Data from West Coast Basin wells indicate that most wells in production had TDS concentrations below 750 mg/L. Several production wells located close to the coast in the Hawthorne/Torrance areas had TDS concentrations above 750 mg/L.

#### 4.3 IRON

Iron and manganese in general are not harmful for ingestion. They are essential nutrients. However, secondary standards of 0.3 mg/L for iron and 50  $\mu$ g/L for manganese were established for aesthetic purposes. If completely oxidized, they are relatively insoluble in groundwater as Fe<sup>+3</sup> and Mn<sup>+4</sup>. However, under anaerobic conditions, these constituents exist in the reduced forms of Fe<sup>+2</sup> and Mn<sup>+2</sup> which are more soluble in water. Upon exposure to air the reduced ions can slowly oxidize and form undesirable precipitates that discolor the water, plumbing fixtures, and clothes. Iron can cause encrustation in pipes and boilers and also impart a metallic taste to the water.

Dissolved iron in groundwater has historically been a water quality problem in portions of the CWCB. An abundant source of iron is present in the minerals making up the aquifers of the basins. The presence of dissolved iron (that is, iron dissolving from minerals into the groundwater) is controlled by a variety of geochemical factors discussed at the end of this section. In the Central Basin, iron in nested monitoring wells (**Figure 4.3**) ranged from less than the detection limit (numerous wells) to 0.6 mg/L (Inglewood #2, zone 1). Iron was detected below the MCL in Silverado zones of 15 out of 21 nested wells. In zones above and below the Silverado, iron was detected below the MCL in 19 out of the 21 Central Basin wells. Iron was detected above the MCL in only one Silverado zone (Pico #1, zone 3), and in only two wells above or below the Silverado (Inglewood #2, zones 1 and 2; and Whittier #1, zones 1 and 2).

In the West Coast Basin elevated iron occurs locally. Iron concentrations ranged from less than the detection limit (numerous wells) to 1.1 mg/L (Inglewood #1, zone 1). Iron is generally detected in most zones at all 15 well locations at concentrations below the MCL. One well in the West Coast Basin had an iron concentration in the Silverado exceeding the MCL (Inglewood #1, zone 1). One other well, PM-3 Madrid zone 4 had an

iron concentration above the MCL in a zone above the Silverado.

**Figure 4.4** presents DHS water quality data for iron in production wells across the CWCB during WYs 2001-2004. The data show elevated iron concentrations in many production wells throughout the CWCB and many purveyors opt to treat groundwater to remove the iron. There does not appear to be a distinct pattern to the occurrence of elevated iron. Production wells exhibiting high iron concentrations appear in and around many with non-detectable iron.

Data from DHS for the West Coast Basin indicate roughly one-third of production wells in the northwestern portion of the Basin have iron concentrations exceeding the secondary MCL. As in the Central Basin, there does not appear to be a distinct pattern to the occurrence of iron in the basins.

Although a definitive source cannot be identified for the various elevated iron concentrations described above, some general geochemical relationships for dissolved iron in groundwater may apply to the iron distribution patterns. First, dissolved iron tends to form under reducing groundwater conditions. Groundwater having a pH value between 6 and 8 can be sufficiently reducing to retain as much as 50 mg/L of dissolved ferrous iron at equilibrium, when bicarbonate activity does not exceed 61 mg/L (Hem, 1992). Second, iron is a common component of many igneous rocks and is found in trace amounts in virtually all sediments and sedimentary rocks—therefore, abundant natural sources of dissolved iron are present throughout the CWCB and under specific geochemical conditions, the natural iron in the sediments can dissolve into the groundwater. Third, water may dissolve any subsurface iron casing, piping, etc. (the main materials of older production wells and pumps, and distribution systems), thus production wells themselves may contribute iron to water supplies.

#### 4.4 MANGANESE

Manganese concentrations in the WRD nested monitoring wells exhibit widespread vertical and horizontal variations across the CWCB. Like iron, manganese is a naturally

occurring element in aquifer materials and groundwater. In the Central Basin (**Figure 4.5**), manganese ranges from below the detection limit (numerous wells) to  $670 \,\mu\text{g/L}$  (Pico #2 zone 6). In the southern portion of the basin, elevated manganese typically occurs in shallower aquifers above the Silverado producing zones. In the northern portion of the Central Basin, manganese is present in shallow zones, the Silverado Aquifer, and the deeper zones.

In the West Coast Basin, manganese concentrations in nested monitoring wells ranged from below the detection limit (numerous wells) up to 1,200  $\mu$ g/L (PM-4 Mariner zone 2). In the southern portion of the West Coast Basin, like iron, elevated manganese concentrations were limited to aquifer zones above the Silverado. In the western and northern portions of the West Coast Basin, manganese concentrations typically exceed the MCL in most zones with only a few zones containing manganese below the MCL.

**Figure 4.6** presents DHS water quality data for manganese in production wells across the CWCB during WYs 2001-2004. The data show a large number of wells having elevated manganese concentrations with approximately one-third exceeding the MCL. The production wells with elevated manganese tend to be widespread, but there does appear to be an area in the vicinity and extending about five miles downgradient of the Montebello Forebay spreading grounds where manganese is consistently below the MCL. In the West Coast Basin, production wells with high concentrations of manganese tend to be somewhat clustered in the western portion of the basin.

#### 4.5 NITRATE

Nitrate concentrations in groundwater are a concern because their presence indicates that a degree of contamination has occurred due to the degradation of organic matter. Native groundwater typically does not contain nitrate. It is usually introduced into groundwater from agricultural practices such as fertilizing crops and leaching of animal wastes, and is also formed when recycled water is percolated through the soil during recharge. Typically, organic nitrogen and ammonia are the initial byproducts of the decomposition

of human or animal wastes. Upon oxidation the organic nitrogen and ammonia are converted first to nitrite and then nitrate ions in the subsurface. A portion of the nitrite and nitrate are converted to nitrogen gas and hence are returned to the atmosphere. Nitrate itself is not harmful; however, it can be converted back to nitrite. If infants injest nitrite, methemoglobinemia, a condition in which hemoglobin in the blood cannot transport oxygen throughout the body may result. Methemoglobinemia results in a lack of oxygen, causing lethargy, shortness of breath, and a bluish skin color. Under extreme cases, this condition can be fatal. To safeguard public health, the DHS has a standard of 10 mg/L as nitrogen for nitrate, 1 mg/L as nitrogen for nitrite, and 10 mg/L as nitrogen for the total of nitrite and nitrate.

Figure 4.7 presents nitrate (as nitrogen) water quality data for nested monitoring wells in the CWCB during WY 2003-2004. In the Central Basin, nitrate (as nitrogen) concentrations ranged from below the detection limit (numerous wells) to 14 mg/L (Los Angeles #1 zone 5). Nested monitoring wells in the vicinity of the Montebello Forebay spreading grounds indicate concentrations of nitrate slightly above detection limits but below the MCL. Rio Hondo #1 and Pico #2 show detectable concentrations of nitrate from the shallowest zones down to Zones 3 and 1 respectively. South Gate #1, Downey #1, and Cerritos #2 show detectable concentrations in one or more of the middle zones, which are directly down the flow path from the spreading grounds, however Silverado and deeper zones of nested wells more distant from the spreading grounds have no detectable concentrations of nitrate. The detectable but relatively low concentrations of nitrate at and near the spreading grounds may be due to the local water and/or recycled water component of recharge at the spreading grounds. Nitrate is also observed in shallow zones at Huntington Park #1, Commerce #1, Montebello #1, Pico #1, Whittier #1, and La Mirada #1. These shallow occurrences of nitrate, away from the spreading grounds, are likely attributed to local surface recharge from former agricultural activities prior to the extensive land development that began in the 1950s.

In the West Coast Basin nested monitoring wells, nitrate concentrations ranged from below the detection limit (numerous wells) to 12 mg/L (Gardena #1). Concentrations

exceeding the nitrate MCL included the shallowest zone of Inglewood #1 and Gardena #1. A detection below the MCL in the shallowest zone at Hawthorne #1 was observed. As in the Central Basin, shallow zone occurrences of nitrate with deeper zones below detection limits are likely attributable to local surface recharge from former agricultural activities prior to the extensive land development that began in the 1950s.

**Figure 4.8** presents DHS water quality data for nitrate in production wells across the CWCB during WYs 2001-2004. The nitrate MCL was not exceeded in any of the wells in the CWCB during the 2001-2004 period. Detectable concentrations below the MCL were generally located in the vicinity and downgradient of the San Gabriel River and Rio Hondo spreading grounds of the Montebello Forebay, and in several scattered locations in the northwestern portion of the Central Basin. Production wells in the southern portion of the Central Basin and all of the West Coast Basin show relatively low nitrate concentrations below 3 mg/L.

#### 4.6 HARDNESS

**Figure 4.9** presents water quality data for total hardness in WRD nested monitoring wells in the CWCB during WY 2003-2004. In the Central Basin total hardness ranged from 6.86 (Long Beach 1 zone 2) to 1,080 mg/L (Whittier #1 zone 1), while in the West Coast Basin, hardness ranged from 7.06 mg/L (Carson #2 zone 3) to 5,560 mg/L (PM-4 Mariner zone 2). In general, the deeper aquifers characterized as having older native groundwater in the southern portion of the Central Basin and locally in the West Coast Basin show low total hardness. Most other zones in both basins have moderate to high hardness.

**Figure 4.10** presents DHS water quality data for total hardness in production wells in the CWCB during WYs 2001-2004. Groundwater in the West Coast Basin has moderate hardness. Production wells in the southern and western portions of the Central Basin show groundwater with low to moderate hardness. In the northern portion of the Central Basin, production wells show groundwater with generally moderate to high hardness.

#### 4.7 SULFATE

Figure 4.11 presents water quality data for sulfate in WRD nested monitoring wells in the CWCB during WY 2003-2004. In the Central Basin sulfate ranged from below the detection limit (numerous wells) to 1,400 mg/L (Whittier #1 zone 1), while in the West Coast Basin sulfate ranged from below the detection limit (numerous wells) to 710 mg/L (PM-4 Mariner zone 2). In general the data indicate that the lowest sulfate concentrations are found in most of the deeper zones of the West Coast Basin and southern portion of the Central Basin. Again, these are areas characterized in previous sections as having characteristics representative of older native groundwater. The uppermost one or two zones in many of these wells typically show elevated sulfate concentrations, likely due to local surface recharge. In the northeast portion of the Central Basin, higher sulfate concentrations are observed in most zones primarily due to the relatively high sulfate in imported Colorado River water. Results show that Silverado zones at only two nested monitoring wells are impacted by sulfate greater than the MCL. These wells include Whittier #1, in an area of generally poor water quality, and PM-4 Mariner, which is impacted by sea water intrusion in the West Coast Basin.

**Figure 4.12** presents DHS water quality data for sulfate in production wells in the CWCB during WYs 2001-2004. The production well data indicate patterns of sulfate concentrations similar to those observed in the deeper zones of WRD nested monitoring wells. Sulfate concentrations are generally low in the central and eastern areas of the West Coast Basin and southern portion of the Central Basin, and somewhat higher along the western margin of the West Coast Basin and in the northern portion of the Central Basin.

#### 4.8 CHLORIDE

**Figure 4.13** presents water quality data for chloride in WRD nested monitoring wells in the CWCB during WY 2003-2004. In the Central Basin, chloride concentrations ranged from 4.7 mg/L (Downey #1 zone 1) to 730 mg/L (Montebello #1 zone 1). The Silverado aquifer zones of the Central Basin nested monitoring wells contain low to very low chloride concentrations, all below 250 mg/L. In the West Coast Basin, chloride ranged

from 12 (Gardena #2 zone 1) to 6,300 mg/L (PM-4 Mariner zone 2). Chloride concentrations exceeded the MCL in the Silverado aquifer zones in five of the fifteen West Coast Basin nested wells, primarily due to seawater intrusion (Long Beach #8, Long Beach #3, Wilmington #1, Wilmington #2, and PM-4 Mariner) or from sources yet to be identified.

**Figure 4.14** presents DHS water quality data for chloride in production wells in the CWCB during WYs 2001-2004. Chloride was not detected above its MCL in any of the Central Basin production wells. In the southern portion of the Central Basin, chloride concentrations in production wells were generally below 50 mg/L; while in the northeastern portion of the Central Basin, concentrations ranged from 50 to 100 mg/L. In the West Coast Basin, available DHS data indicate that isolated production wells on the west side of the Basin had chloride concentrations above the MCL.

#### 4.9 TRICHLOROETHYLENE (TCE)

TCE is a commonly used solvent for metal cleaning, dry cleaning of fabrics, and textile processing. It is classified as a probable human carcinogen. Its presence in groundwater likely originated from improper disposal practices. The MCL for TCE is 5  $\mu$ g/L. If present in water, it can be removed easily either by packed tower aeration or granular activated carbon treatment.

TCE was detected in five WRD nested monitoring well locations in the Central Basin and in three nested well locations in the West Coast Basin (**Figure 4.15**). In the Central Basin, TCE concentrations, ranged from below the detection limit (numerous wells) to 31 μg/L (Los Angeles #1 zone 5). Only one nested well location, South Gate #1, contained a detectable TCE concentration in the Silverado Aquifer, but that concentration was below the MCL. Four other locations (Los Angeles #1 zone 4, Huntington Park #1 zones 3 and 4, Commerce #1 Zone 5, and Downey #1 zones 5 and 6) had detections of TCE in zones above the Silverado Aquifer. The detections in Los Angeles #1 zones 4 and 5, and Huntington Park #1 Zone 3 were above the MCL.

In the West Coast Basin, TCE concentrations ranged from below the detection limit (numerous wells) to  $17 \,\mu g/L$  (Hawthorne #1 zone 6). In the shallowest zone and deepest zone of Inglewood #1, and the shallowest zone of Hawthorne #1, TCE concentrations above the MCL were detected. In the shallowest zone at PM-3 Madrid, TCE was detected below the MCL. TCE was not detected in the Silverado zones in any of the nested monitoring wells in the West Coast Basin.

**Figure 4.16** presents DHS water quality data for TCE in production wells across the CWCB during WYs 2001-2004. Over 300 wells were tested for TCE. The data show that over the past three years TCE has been detected in 61 production wells in the Central Basin. Fourteen detections were above the MCL. All of the wells with concentrations above the MCL were in the vicinity of the Montebello and Los Angeles Forebay areas. In the West Coast Basin TCE was not detected in any production wells.

#### 4.10 TETRACHLOROETHYLENE (PCE)

Tetrachloroethylene, also known as perchloroethylene or perk, is a solvent used in dry cleaning, textile processing, and metal degreasing. It is also used in the manufacture of fluorocarbons and as a septic tank cleaner. Through improper disposal practices, it has contaminated many groundwater basins. It is a probable human carcinogen. The MCL for PCE is  $5 \mu g/L$ . Like TCE, PCE is easily removed using packed tower aeration or granular activated carbon treatment.

During WY 2003-2004, PCE (**Figure 4.17**) was detected at eight nested well locations in the Central Basin and one well in the West Coast Basin. In the Central Basin, PCE ranged from below the detection limit (numerous wells) to 11 μg/L (South Gate #1 zone 4), all from nested wells within or near the vicinity of the Montebello and Los Angeles forebays. At well South Gate #1, PCE was detected above the MCL in the Silverado Aquifer. At Downey #1 and Cerritos #2, PCE was detected below the MCL in the Silverado Aquifer. South Gate #1 shows PCE detected below the MCL in a zone below the Silverado Aquifer. At Huntington Park #1, PCE was detected below the MCL in zones 3 and 4, above the Silverado Aquifer. At Los Angeles #1, PCE was detected below

the MCL in the two shallowest zones, both above the Silverado aquifer. At Montebello #1, PCE below the MCL was detected in zone 5 above the Silverado. At Pico #2, PCE was detected in 3 zones below the Silverado aquifer; above the MCL in zone 3 and below the MCL in zones 1 and 2.

In the West Coast Basin, PCE concentrations were below the detection limit in all nested monitoring wells except Inglewood #1. The shallowest zone at Inglewood #1 had 1.5  $\mu$ g/L of PCE which is below the MCL. The deepest zone, below the Silverado aquifer, at Inglewood #1 also contained PCE below the MCL.

**Figure 4.18** presents DHS water quality data for PCE in production wells across the CWCB during WYs 2001-2004. In the Central Basin, PCE was detected in 65 production wells. Eleven of the 65 wells exceeded the MCL for PCE. Production wells with detectable PCE are primarily located within the vicinity of the Los Angeles and Montebello Forebays and extend out into the west-central portion of the Central Basin. PCE was not detected in production wells in the southern portion of the Central Basin. PCE was not detected in any production wells tested in the West Coast Basin during WYs 2001-2004.

#### 4.11 SPECIAL INTEREST CONSTITUENTS

Several additional water quality constituents have been monitored and studied by WRD to address emerging water quality issues related to hazardous waste contamination, recycled water use in the CWCB, and proposed revisions to water quality regulations. Current special interest constituents include arsenic, chromium, MTBE, total organic carbon (TOC), apparent color, and perchlorate. Studies have included focused sampling of WRD nested monitoring wells and evaluation of DHS Title 22 Program data for the special interest constituents. The following subsections present the data collected for each of these constituents.

#### **4.11.1 Arsenic**

The Safe Drinking Water Act, as amended in 1996, requires the United States Environmental Protection Agency (EPA) to revise the existing drinking water standard for arsenic, which they have done. The DHS is required to establish a standard equal to or more stringent than the EPA standard. In establishing the new statewide standard, the DHS will consider not only possible adverse health effects from exposure to this constituent but also, as required by statute, technical, and economic feasibility. Studies have shown that treatment to remove arsenic to acceptable levels is technically feasible. However, the arsenic then becomes a potential hazardous waste. It is uncertain if arsenic residuals can be properly disposed of at acceptable costs.

EPA announced on October 31, 2001 that the arsenic standard will remain at  $10 \mu g/L$ , as was originally announced on January 21, 2001. Three expert panel reviews were conducted on the health effects of arsenic, costs for compliance, and benefits associated with varying degrees of treatment, and were considered before EPA's announcement. The current State standard is  $50 \mu g/L$ . Because costs for small systems will be significant, EPA has indicated that they will provide assistance in funding and training, as well as research, to find new treatment technologies that will reduce costs of compliance. The date for compliance for all water systems is January 2006.

Health and Safety code Section 116361 requires the DHS to adopt a new arsenic MCL by June 30, 2004 and required the Office of Environmental Health Hazard Assessment (OEHHA) to establish a new Public Health Goal (PHG) by December 31, 2002. Also, new language concerning the health effects of ingesting water with arsenic is required in Consumer Confidence Reports as of July 1, 2003. OEHHA announced the final PHG of  $0.004~\mu g$ /L in April 2004. As part of the regulatory process, DHS is required to establish an MCL at a level as close as is technically and economically feasible to the PHG.

Arsenic is an element that occurs naturally in the earth's crust. Accordingly, there are natural sources of exposure. Natural sources of arsenic include weathering and erosion of rocks, deposition of arsenic in water bodies, and uptake of the metal by animals and

plants. Consumption of food and water are the major sources of arsenic exposure for the majority of U.S. citizens. Over ninety percent of commercial arsenic is used as wood preservative in the form of chromate copper arsenate to prevent dry rot, fungi, molds, termites, and other pests. People may also be exposed from industrial applications, such as semiconductor manufacturing, petroleum refining, animal feed additives and herbicides. Arsenic is carcinogenic and also causes other health effects such as high blood pressure and diabetes.

**Figure 4.19** presents arsenic water quality data for WRD nested monitoring wells during WY 2003-2004. In the Central Basin arsenic concentrations ranged from non-detectable (numerous wells) to 51 μg/L in the shallowest zone at Norwalk #1 zone 3. Arsenic concentrations greater than the pending MCL in the Central Basin were found at seven wells, Willowbrook #1, Compton #1, Pico #2, Lakewood #1, Cerritos #1, Cerritos #2, and Norwalk #1. Arsenic concentrations exceeding the pending MCL in the Silverado aquifer zones were found only at Cerritos #1 and Cerritos #2, located in the eastern portion of the District. Overall the distribution of arsenic appears to be similar to the distribution of iron and manganese in the Central Basin with generally lower concentrations near the Forebays and higher concentrations down the flow paths away from the Montebello Forebay spreading basins.

In the West Coast Basin only zone 2 at PM-4 Mariner had an arsenic concentration above the pending MCL in the Silverado Aquifer. The deepest zones in Gardena #1 and Inglewood #1, below the Silverado Aquifer, had a concentrations of arsenic above the pending MCL of  $10~\mu g/L$ . Arsenic concentration above the current MCL was observed at the shallowest zone at Wilmington #2.

Figure 4.20 presents DHS water quality data for arsenic in production wells across the CWCB during WYs 2001-2004. Eight production wells in the central and southeastern portion of the Central Basin contained arsenic concentrations above the pending MCL. Many other production wells at various locations in the Central Basin contained arsenic at concentrations between 5 and 10  $\mu$ g/L. Arsenic was not detected in any of the West

Coast Basin production wells during WYs 2001- 2004.

#### 4.11.2 Chromium

Chromium is a metal used in the manufacture of stainless steel, metal plating operations, and other applications. Chromium has the potential to contaminate groundwater from spills and leaking tanks. It comes in two basic forms: chromium 3 (trivalent) and chromium 6 (hexavalent) ions. Chromium 3 is a basic nutrient that is quite commonly ingested by adults in doses of 50 to 200  $\mu$ g/day. Chromium 6 is an oxidized form of chromium 3 that is a known carcinogen when inhaled. This is based on occupational exposures in chromium plating and other related industries. It is unclear if ingestion of chromium 6 is harmful. The reduction of chromium 6 to chromium 3 that occurs from gastric juices during digestion is a key factor in determining the level of carcinogenicity of ingested chromium 6.

Currently the MCL for total (all forms of) chromium is 50 µg/L. In February 1999, OEHHA established a Public Health Goal for total chromium at 2.5 µg/L, based on a health protective level for chromium 6 at 0.2 µg/L and the assumption that 7 percent of total chromium in drinking water is chromium 6. In November 2001, OEHHA announced that it rescinded this PHG. At their request earlier this year, a scientific panel convened by the University of California, known as the Chromate Toxicity Review Committee, reviewed the study that OEHHA originally used as a basis for their PHG and concluded in September 2001 that the data were flawed and should not be used for health risk assessment. At the request of both DHS and OEHHA, the National Toxicity Program of the National Institute of Environmental Health Sciences will perform a long-term health effects study on rodents to evaluate the potential carcinogenicity of ingested chromium 6. It is expected to be completed in 2005. DHS has added chromium 6 to its list of Unregulated Chemicals Requiring Monitoring (UCRM) in production wells.

Health and Safety Code Section 116365.5 required DHS to adopt a chromium 6 MCL by January 1, 2004. However, OEHHA has not yet issued a new draft chromium 6 PHG.

**Figure 4.21** presents total chromium water quality data for WRD nested monitoring wells. In the Central Basin, only the uppermost zone in the Los Angeles #1 nested well exceeded the MCL of 50  $\mu$ g/L for total chromium. Trace levels of total chromium were detected in one or more zones of all other Central Basin nested wells. Total chromium was not detected above the MCL in the West Coast Basin. As in the Central Basin, trace levels of total chromium were detected in one or more zones of numerous other nested wells in the West Coast Basin.

**Figure 4.22** presents DHS water quality data for total chromium in production wells across the CWCB during WYs 2001-2004. No production wells in the Central Basin exceeded the MCL for total chromium. Fifteen production wells in the Central Basin contained total chromium below the MCL. In the majority of production wells sampled in the Central Basin, total chromium was not detected. Total chromium was not detected in any of the production wells tested in the West Coast Basin.

**Figure 4.23** presents hexavalent chromium water quality data for WRD nested monitoring wells. Most WRD nested monitoring wells have been sampled twice for hexavalent chromium since early 1998. Most zones contained hexavalent chromium below the Preliminary Health Goal of 0.2 μg/L. However, in the northern portion of the Central Basin, hexavalent chromium was detected at concentrations ranging from 0.2 to 30 μg/L. All of the detected concentrations were below the current MCL for total chromium. In the Los Angeles #1, Huntington Park #1, Commerce #1, Downey #1, Rio Hondo #1, Pico #1, and Whittier #1 wells, hexavalent chromium was detected in zones above the Silverado Aquifer. In Los Angeles #1, South Gate #1, Downey #1, Rio Hondo #1, Pico #2, Cerritos #2, Norwalk #1, Long Beach #1, Long Beach #2, and Long Beach #6, hexavalent chromium was detected in zones within and/or below the Silverado Aquifer. In the West Coast Basin, hexavalent chromium was detected below the MCL for total chromium in the shallowest zones of Inglewood #1, Gardena #1, and Chandler #3. Hexavalent chromium below the MCL was detected in the lowest zones at Westchester #1, Long Beach #3, and Long Beach #8.

As new wells are added to the WRD nested monitoring well network, samples will be collected for hexavalent chromium analysis to update the special study results. WRD will report these updates in subsequent Regional Groundwater Monitoring Reports.

**Figure 4.24** presents WYs 2001-2004 DHS water quality data for hexavalent chromium in production wells across the CWCB during 2001-2004. Hexavalent chromium results have been reported in over 100 production wells in the Central Basin and West Coast Basins. Detections of hexavalent chromium were observed in 29 Central Basin wells, all below the MCL for total chromium Hexavalent chromium was not detected in any of the West Coast Basin production wells.

#### 4.11.3 Methyl Tert-Butyl Ether (MTBE)

Methyl tert(iary) butyl ether (MTBE) is a synthetic chemical added to gasoline to improve air quality as required by the Federal Clean Air Act. Limited quantities have been used in gasoline in California since the 1970s. In 1992, oil companies began using it extensively in California to meet reformulated gas requirements of the State Air Resources Board. Its use enables gasoline to burn more completely. However, MTBE has been detected in groundwater and surface water throughout California from sources including leaking underground storage tanks, pipelines, and spills; and from emissions of boat engines into lakes and reservoirs. Animal tests have shown MTBE to be carcinogenic. Effective May 17, 2000, a primary MCL of 13 µg/L was established by DHS. A secondary standard of 5 µg/L was established in response to taste and odor concerns. Effective January 1, 2004, the use of MTBE is banned. The most likely substitute for MTBE is ethanol. The production and distribution of ethanol, however, is problematic. There may not be an adequate supply source, and it cannot be delivered through pipelines. The State requested a waiver from the USEPA for oxygenates, and was denied. The State has filed suit requesting EPA to reconsider. On January 29, 2004, Governor Schwarzenegger submitted to USEPA another request for a waiver from oxygenate requirements.

Figure 4.25 presents MTBE water quality data for WRD nested monitoring wells during

WY 2003-2004. MTBE was not detected in any of the WRD nested monitoring wells. MTBE will be watched closely in the future in WRD nested monitoring wells.

**Figure 4.26** presents DHS water quality data for MTBE in production wells across the CWCB during WYs 2001-2004. In the Central Basin, MTBE was detected in three production wells in the Montebello Forebay area. All three wells are in close proximity to each other and have not exceeded the MCL. MTBE was not detected in any West Coast Basin production wells during the reporting period.

#### 4.11.4 Total Organic Carbon

Total organic carbon (TOC) is the broadest measure of the concentration of organic molecules in water and is of interest because it gives an indication of the potential formation of disinfectant byproducts, some of which are harmful. TOC can be naturally occurring, result from domestic and commercial activities, or can be a product of wastewater treatment processes. While there is no MCL established for TOC, regulators are generally concerned with TOC of wastewater origin as a measurable component of recycled water. Typically, wastewater that has been subjected to effective secondary treatment contains 5 to 15 mg/L of TOC. Advanced treatment can effectively lower the TOC concentration to less than 1 mg/L. Likewise, percolating water through the soil has also been proven to be an effective method in reducing TOC in reclaimed water. Studies indicate that the TOC measured in groundwater samples in both nested monitoring wells and production wells in the CWCB is naturally occurring in the aquifer systems and was derived from organic material and decaying vegetation either deposited with the aquifer sediments as the basins were filling or originally contained in imported water (AWWA, 2001).

**Figure 4.27** presents TOC water quality data for WRD nested monitoring wells during WY 2003-2004. In the Central Basin, TOC was detected in multiple zones of 19 of the 21 nested monitoring wells. Only La Mirada #1 contained no detectable TOC in any zone. Where TOC is present, concentrations are typically below 1 mg/L and less frequently between 1 and 5 mg/L. The lower concentrations occur in the shallow and

middle zones of the nested wells; higher concentrations of TOC are generally found in the deeper zones. Only four wells in the Central Basin have zones with TOC greater than 5 mg/L; including the four deepest zones at Long Beach #6, the deepest zone at Long Beach #2, the deepest two zones at Inglewood #2, and the deepest two zones sampled at Montebello #1. The deeper wells with TOC greater than 5 mg/L are likely to contain naturally occurring organic carbon, and not wastewater related organic carbon. In the West Coast Basin, TOC greater than 1 mg/L is present in one or more zones at all 15 nested monitoring wells tested, and at concentrations greater than 5 mg/L in one or more zones at seven of the 15 West Coast Basin production wells tested.

Figure 4.28 presents limited DHS water quality data for TOC in production wells across the CWCB during WYs 2001-2004. During the three-year period only 38 wells were tested for TOC. Only six of the 38 wells tested below the detection limit for TOC. Most of the wells contained TOC at concentrations ranging from 1 to 5 mg/L and most were located near the Montebello Forebay spreading basins or in the southern Central Basin (City of Long Beach).

#### 4.11.5 Apparent Color

Apparent color in groundwater (colored groundwater) is not toxic or harmful; an MCL of 15 apparent color units (ACUs) has been established as an aesthetic standard. Colored groundwater results from colloidal organic particles suspended in the water that display colors ranging from pale yellow to a dark tea brown. There is an observed relationship between apparent color and TOC, especially in the higher concentration range. Colored groundwater can be effectively treated and served, however treatment is relatively expensive.

**Figure 4.29** presents apparent color water quality data for WRD nested monitoring wells in the CWCB during WY 2003-2004. Apparent color is present above the MCL in the deepest zones of seventeen nested monitoring wells. One other well has apparent color above the MCL in intermediate zones. Apparent color does not exceed the MCL in the uppermost zone in any nested monitoring wells tested. This relationship between

apparent color and depth, along with the relationship between color and TOC, is probably due to an increase in the content of natural organic matter in the deeper sediments of the basins.

**Figure 4.30** presents DHS water quality data for apparent color in production wells across the CWCB during WYs 2001-2004. These data indicate that colored groundwater is not a widespread problem in the basins. Most production wells tested below the MCL. Locally in the Long Beach, Inglewood, La Mirada/Norwalk, Pico Rivera and Los Angeles areas, several wells did test above the MCL for apparent color; some water purveyors in those areas have treatment systems operating to remove color from the groundwater.

#### 4.11.6 Perchlorate

Perchlorate is the primary ingredient in rockets, missiles, road flares, and fireworks. It also has widespread use in air bag inflators, electronics, electroplating, lubricating oils, and the production of paints and enamels. Studies show that perchlorate can impact the proper functioning of the thyroid gland by inhibiting the uptake of iodide, and can cause a decrease in the production of hormones necessary for normal growth, development, and metabolism.

**Figure 4.31** presents perchlorate water quality data for WRD nested monitoring wells in the CWCB during 1998-2004. The longer time period was used because perchlorate is only tested the first two sampling events at a new nested monitoring well and not tested twice per year as are most other constituents in this report. Perchlorate has been detected above the SAL in two Central Basin nested monitoring wells. At Huntington Park #1, perchlorate was detected above the SAL above the Silverado Aquifer. At Downey #1, perchlorate was detected above the SAL within the Silverado Aquifer. Perchlorate is present below the SAL in three other Central Basin nested monitoring wells including Commerce #1, South Gate #1, and Los Angeles #1. In the West Coast Basin, perchlorate was detected below the SAL at three wells; the shallowest zones of Lomita #1, Chandler #3, and Gardena #1.

**Figure 4.32** presents DHS water quality data for perchlorate in production wells across the CWCB during WYs 2001-2004. These data indicate perchlorate is not a widespread problem in the basins. Most production wells tested below the detection limits. Locally, one production well in Norwalk, one in Downey, and one in the Los Angeles Forebay had detectable perchlorate at concentrations below the SAL.

#### 4.12 CONTAMINANT SOURCE IDENTIFICATION

The WRD service area is highly developed with one of the world's largest and most diverse industrial bases. There are many thousands of potential groundwater contamination sources ranging from a home owner changing motor oil to leaks from underground storage tanks at gas stations, refineries, and petrochemical plants. Such potential contamination may pose a threat to the deeper drinking water aquifers.

During the 2003-2004 WY, the District initiated a program to identify and prioritize threats to CWCB groundwater. WRD staff conducted weekly visits to the DTSC and RWQCB-LA offices and local EPA repositories, to review case files on their highest-priority groundwater contamination sites as identified by DTSC, RWQCB and EPA

personnel. Staff generated concise summaries of these case files. Over the current year, staff will develop a matrix to evaluate these case files using weighted parameters such as depth to water supply aquifers, distance from production wells, and degree of groundwater contamination, and rank the case files in order of the level of effort recommended for WRD to expend in assisting the lead regulatory agency with respect to oversight of monitoring and remediation. **Table 4.4** lists the names cities where contaminated sites are located, as well as the lead regulatory agency and **Figure 4.33** shows the locations of these sites in the WRD.

Several meetings were held among the following agencies to address this contamination on a regional basis: Water Replenishment District, EPA, USGS, RWQCB, DTSC, and City of Santa Fe Springs. A Memorandum of Understanding (MOU) was drafted and distributed for review amongst the agencies. This MOU set forth a basic understanding that each agency will work together cooperatively and that WRD will serve as a clearinghouse for the data being collected. At this time, the final MOU is being circulated amongst the various agencies for signature.

#### **SECTION 5**

#### **SUMMARY OF FINDINGS**

This Annual Groundwater Monitoring Report was prepared by WRD to report on the groundwater conditions in the CWCB during the WY 2003-2004. A summary of findings is presented below.

- Artificial replenishment activities combined with natural replenishment and controlled pumping have ensured a sustainable, reliable supply of groundwater in the CWCB. Artificial replenishment water sources used by WRD include imported water from the Metropolitan Water District of Southern California, recycled water from the County Sanitation Districts of Los Angeles County, and recycled water with advanced treatment from West Basin MWD.
- At the Montebello Forebay, 27,520 AF of imported water was conserved for replenishment during WY 2003-2004. A total of 44,924 AF of recycled water was conserved for spreading in the Montebello Forebay. A total of 21,361 AF of imported water was injected to the seawater barriers. A total of 3,669 AF of recycled water was purchased for injection into the West Coast Basin Barrier Project. Total artificial replenishment was 93,805 AF for WY 2003-2004.
- Groundwater production in the CWCB was 248,334 AF for Water Year 2003-2004. This amount is less than the adjudicated amount of 281,835 AF.
- Groundwater levels (heads) were monitored continuously in the CWCB during the water year. The WRD nested monitoring wells show clear, significant differences in groundwater elevations between the various aquifers screened. The head differences in the WRD nested monitoring wells reflect both hydrogeologic and pumping conditions in the CWCB. Vertical head differences between 1 and 60 feet occur between zones above and within the producing zones. The greatest head differences tend to occur in the Long Beach area of the Central Basin and Gardena and Carson areas of the West Coast Basin, while the smallest differences occur in the Montebello Forebay recharge area, and the Torrance area which has thick, merged aquifers.

- Basinwide hydrographs and groundwater elevations measured in nested monitoring wells and key production wells indicate significant declines in water levels, up to 40 feet in the Central Basin and generally stable to slightly increasing levels in the West Coast Basin during WY 2003-2004. On average, water levels dropped in the unconfined Montebello Forebay area about 8 feet and in the Los Angeles Forebay about 3 feet during WY 2003-2004. Elsewhere in the confined portions of the deeper aquifers of the basin water levels generally decreased during WY 2003-2004. The change in groundwater storage for the CWCB was calculated at a loss in storage of approximately 43,000 AF from the CWCB.
- The water quality associated with key constituents in untreated imported water used at the Montebello Forebay spreading grounds remains good. Average TDS, hardness, iron and manganese concentrations in both Colorado River and State Project Water remain below their respective MCLs. Meanwhile, TCE and PCE have not been detected in either water source.
- The water quality associated with key constituents in recycled water used at the Montebello Forebay spreading grounds also remains excellent and is carefully monitored and controlled to show little variation over time.
- Stormwater samples are occasionally collected and analyzed for water quality parameters. Samples collected recently show that average stormwater TDS concentrations and hardness are lower than most other sources of replenishment water.
- Based on the data obtained from the WRD nested monitoring wells during WY 2003-2004, the water quality associated with key constituents in groundwater differs both vertically between aquifers and horizontally (areally) across the CWCB.
- TDS concentrations for WRD wells located in the Central Basin are relatively low, while TDS concentrations for WRD wells located in the West Coast Basin are elevated in portions of the basin, primarily the Torrance and Dominguez Gap areas. The elevated TDS concentrations may be caused by seawater intrusion or connate brines, or possibly oil field brines. During this reporting period, concentrations in the Central Basin ranged from 170 mg/L to 2,800 mg/L, and in the West Coast Basin 200 mg/L to 12,000 mg/L. The District is conducting further studies with the USGS

- to identify potential sources of high TDS.
- Iron concentrations are potentially problematic in portions of the CWCB. During the current reporting period, concentrations in the Central Basin ranged from non-detectable to 0.6 mg/L, and in the West Coast Basin from non-detectable to 1.1 mg/L. The secondary MCL for iron is 0.3 mg/L. Sources of the localized high iron concentrations have not yet been identified but are possibly naturally occurring.
- Similar to the iron concentrations, manganese concentrations exceed the MCL (50 μg/L) in a large number of nested monitoring wells and production wells across the CWCB. During the current reporting period, concentrations in the Central Basin ranged from non-detectable to 670 μg/L, and in the West Coast Basin from non-detectable to 1,200 μg/L. Similar to iron, sources of the localized high manganese concentrations have not yet been identified but are possibly naturally occurring.
- Nitrate (as nitrogen) concentrations in WRD nested monitoring wells in the Central Basin ranged from non-detectable to 14 mg/L, and in the West Coast Basin from non-detectable to 12 mg/L. Concentrations approaching or exceeding the 10 mg/L MCL tend to be limited to the uppermost zone at a particular nested well and are likely due to localized infiltration and leaching. Concentrations above the MCL were not observed in the Silverado Aquifer. DHS data indicates that none of the CWCB production wells tested for nitrate above the MCL during WYs 2001-2004.
- TCE was not detected in the Silverado Aquifer in the WRD wells sampled, with the exception of South Gate #1. During the current reporting period, concentrations in nested monitoring wells in the Central Basin ranged from non-detectable to 31 μg/L, and in the West Coast Basin from non-detectable to 17 μg/L. DHS data indicate that TCE was detected in 61 production wells in the Central Basin during WYs 2001-2004, 14 out of the 61 detections exceed the MCL for TCE. In the West Coast Basin, TCE was not detected above the MCL in any production wells.
- PCE was detected in eight WRD nested monitoring wells in the Central Basin and one well in the West Coast Basin. PCE was detected in the Silverado Aquifer in three of the WRD wells sampled. During the current reporting period, concentrations in the Central Basin ranged from non-detectable to 11 μg/L, and in the West Coast Basin from non-detectable to 1.5 μg/L. DHS data indicate that PCE was detected in

- 65 production wells in the Central Basin during WYs 2001-2004. Eleven out of the 65 detections exceeded the MCL for PCE. PCE was not detected in any of the West Coast Basin production wells.
- EPA has adopted a new arsenic standard for drinking water, decreasing the former MCL of 50 μg/L to 10 μg/L. Enforcement of the pending MCL is scheduled to begin in 2006. WRD nested monitoring wells indicate that arsenic concentrations in the southeast portion of the Central Basin exceed the pending MCL. Eight production wells, all in this portion of the Central Basin, have arsenic concentrations exceeding the pending MCL of 10 μg/L. Arsenic was not detected above the MCL in any of the West Coast Basin production wells.
- Chromium, including hexavalent chromium, was detected above the MCL in groundwater samples from one WRD nested monitoring well and three production wells in the vicinity of the Montebello and Los Angeles Forebay areas. Additional monitoring wells and production wells contained detectable chromium concentrations below the MCL. Some of the detections are in the deep aquifers including the Silverado and Sunnyside. DHS data for hexavalent chromium in groundwater from production wells are reasonably consistent with data for nested monitoring wells. WRD is currently conducting an investigation to identify potential sources of hexavalent chromium in the South Gate/Cudahy/Bell Gardens area of the Central Basin.
- MTBE was detected in three Central Basin production wells, all below the MCL.
- Total organic carbon and apparent color are being monitored and studied in relation to potential groundwater production from deeper portions of the CWCB than have typically been utilized in the past.
- Perchlorate was detected in four WRD nested monitoring wells and three production wells in the Central Basin, all concentrations below the SAL. Perchlorate was not detected in West Coast Basin wells.
- As shown by the data presented herein, groundwater in the CWCB is of generally good quality and is suitable for use by the pumpers in the District, the stakeholders, and the public. Localized areas of marginal to poor water quality are either currently receiving or may require treatment prior to being used as a potable source.

• WRD's review of the major contamination sites in the CWCB has resulted in a list of thirty-six priority sites which could impact groundwater. WRD is working with the lead regulatory agencies of these sites to monitor investigation and clean-up activities.

### **SECTION 6**

#### **FUTURE ACTIVITIES**

WRD will continue to update and augment its Regional Groundwater Monitoring Program to best serve the needs of the District, the pumpers and the public. Some of the activities planned under this program for the WY 2004-2005 are listed below.

- WRD will continue to maximize recycled water use at the Montebello Forebay spreading grounds without exceeding regulatory limits, because recycled water is a high quality and relatively low-cost replenishment water source. Over the past three years, WRD has nearly fully utilized this resource within regulatory limits.
- WRD will continue to maximize recycled water use at the West Coast Basin barrier, and intends to use recycled water at the Dominguez Gap and Alamitos barriers in WY 2004-2005. Extensive monitoring of these recycled water injection projects will be performed to comply with applicable permits.
- WRD will continue to monitor the quality of replenishment water sources to ensure the CWCB are being recharged with high-quality water.
- Total injection quantities at the Dominguez Gap Barrier is expected to increase over the next several years as additional barrier wells are utilized to further combat seawater intrusion. Injection quantities at the West Coast Basin Barrier and the Alamitos Barrier are expected to remain at current or reduced levels. WRD will work with the pumpers over the next year to find solutions to reduce the injection water demands and/or high costs. Basin management alternatives including Aquifer Storage and Recovery (ASR) projects, pipeline construction, and other conjunctive use projects and programs will be explored to help find solutions to future groundwater resource management challenges.
- WRD continues refining the regional understanding of groundwater occurrence, movement, and quality. Water levels will be recorded using automatic dataloggers to monitor groundwater elevation differences throughout the year.
- WRD will continue to sample groundwater from nested monitoring wells, and

analyze the samples for general water quality constituents. In addition, WRD will continue to focus on constituents of interest to WRD and the pumpers such as TCE, PCE, arsenic, hexavalent chromium, MTBE, perchlorate, and apparent color. New chemicals of concern which have not been comprehensively monitored include NDMA, 1,4-Dioxane, and others

- WRD Staff will be working on refining the hydrogeologic conceptual model of the CWCB using data from the RGWMP and other data to serve as an improved framework for understanding the dynamics of the groundwater system and use as a planning tool.
- WRD staff will continue to be proactively involved in the oversight of the most significant contaminated sites that threaten CWCB groundwater resources.
- WRD will continue to use the data generated by the Regional Groundwater Monitoring Program along with WRD's advanced GIS capabilities to address current and upcoming issues related to water quality and groundwater replenishment in the Central and West Coast Basins.

### SECTION 7 REFERENCES

American Water Works Association Research Foundation (AWWA), Soil Aquifer treatment for Sustainable Water Reuse, 2001.

Bookman-Edmonston Engineering, Inc., Report on Program of Water Quality Monitoring, January 1973.

California Department of Water Resources (DWR), Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A – Ground Water Geology, 1961.

County Sanitation Districts of Los Angeles County (CSDLAC), *Montebello Forebay Groundwater Recharge Engineering Report*, November 1997.

County Sanitation Districts of Los Angeles County (CSDLAC), Montebello Forebay Groundwater Recharge-WQCB order No. 91-100, Monitoring and Reporting Program No. 5728, Annual Monitoring Reports, 1999.

Driscoll, Fletcher G, Ph.D., *Groundwater and Wells*, Johnson Filtration Systems, Inc. 1989.

Fetter, C.W., Applied Hydrogeology, Third Edition, Prentice-Hall, 1994.

Hem, John D., Study and Interpretation of the Chemical Characteristics of Natural Water, Third Edition, U.S. Geological Survey Water-Supply Paper 2254, 1992.

Mendenhall, W.D., 1905, Development of underground waters in the central coastal plain region of southern California: U.S. Geological Survey Water Supply Paper 137, 140p.

Metropolitan Water District of Southern California (MWD), Draft Annual Report, 1999.

Montgomery Watson, Report for West Coast Basin Desalinization Feasibility/Siting Study, February 1997.

Montgomery Watson, West Coast Basin Plume Mitigation Study, September 1992.

National Research Council, Issues in Potable Reuse, National Academy Press, 1998.

Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Kieth J.; Johnson, Theodore A.; Paybins, Katherine S.; and Nishikawa, Tracey: *Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California*, United States Geological Survey Water Resources Investigations Report 03-4065; Sacramento, California, 2003.

United States Environmental Protection Agency (EPA), Whittier Narrows Operable Unit Feasibility Study Addendum, October 1998.

Water Replenishment District of Southern California (WRD), *Engineering Survey and Report*, 2000.

West Basin Municipal Water District, West Basin Water Reclamation Treatment Facility, Annual Report, 1999.



## TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS $$_{\mbox{\scriptsize Page 1 of 4}}$$

| Well Name     | Zone         | WRD ID<br>Number | Depth of Well (feet)                           | Top of<br>Perforation<br>(feet) | Bottom of<br>Perforation<br>(feet) | Aquifer<br>Designation    |
|---------------|--------------|------------------|------------------------------------------------|---------------------------------|------------------------------------|---------------------------|
| Carson #1     | 1            | 100030           | 1010                                           | 990                             | 1010                               | Sunnyside                 |
| Guison III i  | 2            | 100031           | 760                                            | 740                             | 760                                | Silverado                 |
|               | 3            | 100031           | 480                                            | 460                             | 480                                | Lynwood                   |
|               | 4            | 100032           | 270                                            | 250                             | 270                                | Gage                      |
| Carson #2     | 1            | 101787           | 1250                                           | 1230                            | 1250                               | Sunnyside                 |
| Caison #2     | 2            | 101788           | 870                                            | 850                             | 870                                | Silverado                 |
|               | 3            | 101789           | 620                                            | 600                             | 620                                | Silverado                 |
| +             | 4            | 101789           | 470                                            | 450                             | 470                                | Lynwood                   |
|               | 5            | 101790           | 250                                            | 230                             | 250                                | Gage                      |
| Cerritos #1   | 1 1          | 100870           | 1215                                           | 1155                            | 1175                               |                           |
| Cernios #1    | _            | 100870           | 1020                                           | 1000                            | 1020                               | Sunnyside                 |
|               | 2            |                  |                                                |                                 |                                    | Sunnyside                 |
|               | 3            | 100872           | 630                                            | 610                             | 630                                | Lynwood                   |
|               | 4            | 100873           | 290                                            | 270                             | 290                                | Gage                      |
|               | 5            | 100874           | 200                                            | 180<br>125                      | 200                                | Artesia                   |
| 0 11 110      | 6            | 100875           | 135                                            |                                 | 135                                | Artesia                   |
| Cerritos #2   | 1            | 101781           | 1470                                           | 1350                            | 1370                               | Sunnyside                 |
|               | 2            | 101782           | 935                                            | 915                             | 935                                | Silverado                 |
|               | 3            | 101783           | 760                                            | 740                             | 760                                | Silverado                 |
|               | 4            | 101784           | 510                                            | 490                             | 510                                | Jefferson                 |
|               | 5            | 101785           | 370                                            | 350                             | 370                                | Gage                      |
|               | 6            | 101786           | 170                                            | 150                             | 170                                | Gaspur                    |
| Chandler #3B  | 1            | 100082           | 363                                            | 341                             | 363                                | Gage/Lynwood/Silverado    |
| Chandler #3A  | 2            | 100083           | 192                                            | 165                             | 192                                | Gage/Lynwood/Silverado    |
| Commerce #1   | 1            | 100881           | 1390                                           | 1330                            | 1390                               | Pico Formation            |
|               | 2            | 100882           | 960                                            | 940                             | 960                                | Sunnyside                 |
|               | 3            | 100883           | 780                                            | 760                             | 780                                | Sunnyside                 |
|               | 4            | 100884           | 590                                            | 570                             | 590                                | Silverado                 |
|               | 5            | 100885           | 345                                            | 325                             | 345                                | Hollydale                 |
|               | 6            | 100886           | 225                                            | 205                             | 225                                | Exposition/Gage           |
| Compton #1    | 1            | 101809           | 1410                                           | 1370                            | 1390                               | Sunnyside                 |
|               | 2            | 101810           | 1170                                           | 1150                            | 1170                               | Sunnyside                 |
|               | 3            | 101811           | 820                                            | 800                             | 820                                | Silverado                 |
|               | 4            | 101812           | 480                                            | 460                             | 480                                | Hollydale                 |
|               | 5            | 101813           | 325                                            | 305                             | 325                                | Gage                      |
| Downey #1     | 1 1          | 100010           | 1190                                           | 1170                            | 1190                               | Sunnyside                 |
|               | 2            | 100011           | 960                                            | 940                             | 960                                | Silverado                 |
|               | 3            | 100012           | 600                                            | 580                             | 600                                | Silverado                 |
|               | 4            | 100012           | 390                                            | 370                             | 390                                | Hollydale/Jefferson       |
|               | 5            | 100014           | 270                                            | 250                             | 270                                | Exposition                |
|               | 6            | 100014           | 110                                            | 90                              | 110                                | Gaspur                    |
| Gardena #1    | 1            | 100020           | 990                                            | 970                             | 990                                | Sunnyside                 |
| Garderia #1   | 2            | 100020           | 465                                            | 445                             | 465                                | Silverado                 |
|               | 3            | 100021           | 365                                            | 345                             | 365                                | Lynwood                   |
|               | 4            | 100022           | 140                                            | 120                             | 140                                | Gage                      |
| Gardena #2    | 1            | 101804           | 1335                                           | 1275                            | 1335                               | Sunnyside                 |
| Gardena #2    | 2            | 101804           | 790                                            | 770                             | 790                                | Silverado                 |
|               | 3            | 101806           | 630                                            | 610                             | 630                                | Silverado                 |
|               | 4            | 101806           | 360                                            | 340                             | 360                                | Lynwood                   |
|               | 5            | 101807           | 255                                            | 235                             | 255                                | Gardena                   |
| 1 lau de c 44 | <del>-</del> |                  | <u>.                                      </u> |                                 | i                                  |                           |
| Hawthorne #1  | 1            | 100887           | 990                                            | 910                             | 950                                | Pico Formation            |
|               | 2            | 100888           | 730                                            | 710                             | 730                                | Lower San Pedro/Sunnyside |
|               | 3            | 100889           | 540                                            | 520                             | 540                                | Lower San Pedro/Sunnyside |
|               | 4            | 100890           | 420                                            | 400                             | 420                                | Silverado                 |
|               | 5            | 100891           | 260                                            | 240                             | 260                                | Lynwood                   |
|               | 6            | 100892           | 130                                            | 110                             | 130                                | Gage                      |

# TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 2 of 4

| Well Name          | Zone | WRD ID<br>Number | Depth of Well (feet) | Top of<br>Perforation<br>(feet) | Bottom of<br>Perforation<br>(feet) | Aquifer<br>Designation |
|--------------------|------|------------------|----------------------|---------------------------------|------------------------------------|------------------------|
| Huntington Park #1 | 1    | 100005           | 910                  | 890                             | 910                                | Silverado              |
|                    | 2    | 100006           | 710                  | 690                             | 710                                | Jefferson              |
|                    | 3    | 100007           | 440                  | 420                             | 440                                | Gage                   |
|                    | 4    | 100008           | 295                  | 275                             | 295                                | Exposition             |
|                    | 5    | 100009           | 134                  | 114                             | 134                                | Gaspur                 |
| Inglewood #1       | 1    | 100091           | 1400                 | 1380                            | 1400                               | Pico Formation         |
| 9.511000 11 1      | 2    | 100092           | Abandoned Well       |                                 |                                    |                        |
|                    | 3    | 100093           | 450                  | 430                             | 450                                | Silverado              |
|                    | 4    | 100094           | 300                  | 280                             | 300                                | Lynwood                |
|                    | 5    | 100095           | 170                  | 150                             | 170                                | Gage                   |
| Inglewood #2       | 1    | 100824           | 860                  | 800                             | 840                                | Pico Formation         |
| <b>J</b> • • • • • | 2    | 100825           | 470                  | 450                             | 470                                | Pico Formation         |
|                    | 3    | 100826           | 350                  | 330                             | 350                                | Silverado              |
|                    | 4    | 100827           | 245                  | 225                             | 245                                | Lynwood                |
| Lakewood #1        | 1    | 100024           | 1009                 | 989                             | 1009                               | Sunnyside              |
|                    | 2    | 100025           | 660                  | 640                             | 660                                | Silverado              |
|                    | 3    | 100026           | 470                  | 450                             | 470                                | Lynwood                |
|                    | 4    | 100027           | 300                  | 280                             | 300                                | Gage                   |
|                    | 5    | 100028           | 160                  | 140                             | 160                                | Artesia                |
|                    | 6    | 100029           | 90                   | 70                              | 90                                 | Bellflower             |
| La Mirada #1       | 1    | 100876           | 1150                 | 1130                            | 1150                               | Sunnyside              |
|                    | 2    | 100877           | 985                  | 965                             | 985                                | Silverado              |
|                    | 3    | 100878           | 710                  | 690                             | 710                                | Lynwood                |
|                    | 4    | 100879           | 490                  | 470                             | 490                                | Jefferson              |
|                    | 5    | 100880           | 245                  | 225                             | 245                                | Gage                   |
| Lomita #1          | 1    | 100818           | 1340                 | 1240                            | 1260                               | Lower San Pedro        |
|                    | 2    | 100819           | 720                  | 700                             | 720                                | Silverado              |
|                    | 3    | 100820           | 570                  | 550                             | 570                                | Silverado              |
|                    | 4    | 100821           | 420                  | 400                             | 420                                | Silverado              |
|                    | 5    | 100822           | 240                  | 220                             | 240                                | Gage                   |
|                    | 6    | 100823           | 120                  | 100                             | 120                                | Gage                   |
| Long Beach #1      | 1    | 100920           | 1470                 | 1430                            | 1450                               | Sunnyside              |
|                    | 2    | 100921           | 1250                 | 1230                            | 1250                               | Sunnyside              |
|                    | 3    | 100922           | 990                  | 970                             | 990                                | Silverado              |
|                    | 4    | 100923           | 619                  | 599                             | 619                                | Lynwood                |
|                    | 5    | 100924           | 420                  | 400                             | 420                                | Gage                   |
|                    | 6    | 100925           | 175                  | 155                             | 175                                | Artesia                |
| Long Beach #2      | 1    | 101740           | 1090                 | 970                             | 990                                | Sunnyside              |
|                    | 2    | 101741           | 740                  | 720                             | 740                                | Sunnyside              |
|                    | 3    | 101742           | 470                  | 450                             | 470                                | Silverado              |
|                    | 4    | 101743           | 300                  | 280                             | 300                                | Lynwood                |
|                    | 5    | 101744           | 180                  | 160                             | 180                                | Gage                   |
|                    | 6    | 101745           | 115                  | 95                              | 115                                | Gaspur                 |
| Long Beach #3      | 1    | 101751           | 1390                 | 1350                            | 1390                               | Lower San Pedro        |
| zong zodomio       | 2    | 101752           | 1017                 | 997                             | 1017                               | Silverado              |
|                    | 3    | 101753           | 690                  | 670                             | 690                                | Silverado              |
|                    | 4    | 101754           | 550                  | 530                             | 550                                | Silverado              |
|                    | 5    | 101755           | 430                  | 410                             | 430                                | Lynwood                |
| Long Beach #4      | 1    | 101759           | 1380                 | 1200                            | 1220                               | Pico Formation         |
|                    | 2    | 101760           | 820                  | 800                             | 820                                | Lower San Pedro        |
| Long Beach #6      | 1    | 101792           | 1530                 | 1490                            | 1510                               | Lower San Pedro        |
|                    | 2    | 101793           | 950                  | 930                             | 950                                | Sunnyside              |
|                    | 3    | 101794           | 760                  | 740                             | 760                                | Sunnyside              |
|                    | 4    | 101795           | 500                  | 480                             | 500                                | Silverado              |
|                    | 5    | 101796           | 400                  | 380                             | 400                                | Lynwood                |
|                    | 6    | 101797           | 240                  | 220                             | 240                                | Gage                   |

### TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS $$_{\mbox{\footnotesize{Page 3 of 4}}}$$

| Well Name         | Zone        | WRD ID<br>Number | Depth of Well (feet) | Top of<br>Perforation<br>(feet) | Bottom of<br>Perforation<br>(feet) | Aquifer<br>Designation                |
|-------------------|-------------|------------------|----------------------|---------------------------------|------------------------------------|---------------------------------------|
| Long Beach #8     | 1           | 101819           | 1495                 | 1435                            | 1455                               | Lower San Pedro                       |
| Long Beach #0     | 2           | 101820           | 1040                 | 1020                            | 1040                               | Silverado                             |
|                   | 3           | 101821           | 800                  | 780                             | 800                                | Silverado                             |
|                   | 4           | 101822           | 655                  | 635                             | 655                                | Silverado                             |
|                   | 5           | 101823           | 435                  | 415                             | 435                                | Lynwood                               |
|                   | 6           | 101824           | 185                  | 165                             | 185                                | Gage                                  |
| Los Angeles #1    | 1           | 100926           | 1370                 | 1350                            | 1370                               | Pico Formation                        |
| LOS Aligeles #1   | 2           | 100920           | 1100                 | 1080                            | 1100                               | Sunnyside                             |
|                   | 3           | 100927           | 940                  | 920                             | 940                                | Silverado                             |
|                   | 4           | 100928           | 660                  | 640                             | 660                                |                                       |
|                   | 5           | 100929           | 370                  | 350                             | 370                                | Lynwood<br>Gage                       |
| NA 1 1 11 114     |             |                  | -                    |                                 |                                    | · · · · · · · · · · · · · · · · · · · |
| Montebello #1     | 1           | 101770           | 980                  | 900                             | 960                                | Pico Formation                        |
|                   | 2           | 101771           | 710                  | 690                             | 710                                | Sunnyside                             |
|                   | 3           | 101772           | 520                  | 500                             | 520                                | Silverado                             |
|                   | 4           | 101773           | 390                  | 370                             | 390                                | Lynwood                               |
|                   | 5           | 101774           | 230                  | 210                             | 230                                | Gage                                  |
|                   | 6           | 101775           | 110                  | 90                              | 110                                | Exposition                            |
| Norwalk #1        | 1           | 101814           | 1420                 | 1400                            | 1420                               | Sunnyside                             |
|                   | 2           | 101815           | 1010                 | 990                             | 1010                               | Silverado                             |
|                   | 3           | 101816           | 740                  | 720                             | 740                                | Lynwood                               |
|                   | 4           | 101817           | 450                  | 430                             | 450                                | Jefferson                             |
|                   | 5           | 101818           | 240                  | 220                             | 240                                | Gage                                  |
| Pico #1           | 1           | 100001           | 900                  | 860                             | 900                                | Pico Formation                        |
|                   | 2           | 100002           | 480                  | 460                             | 480                                | Silverado                             |
|                   | 3           | 100003           | 400                  | 380                             | 400                                | Silverado                             |
|                   | 4           | 100004           | 190                  | 170                             | 190                                | Jefferson                             |
| Pico #2           | 1           | 100085           | 1200                 | 1180                            | 1200                               | Sunnyside                             |
|                   | 2           | 100086           | 850                  | 830                             | 850                                | Sunnyside                             |
|                   | 3           | 100087           | 580                  | 560                             | 580                                | Sunnyside                             |
|                   | 4           | 100088           | 340                  | 320                             | 340                                | Silverado                             |
|                   | 5           | 100089           | 255                  | 235                             | 255                                | Lynwood                               |
|                   | 6           | 100009           | 120                  | 100                             | 120                                | Gaspur                                |
| PM-1 Columbia     | 1           | 100030           | 600                  | 555                             | 595                                | Lower San Pedro                       |
| PIVI-1 COIUITIDIA | 2           | 100042           | 505                  | 460                             | 500                                |                                       |
|                   |             | 100043           | <del> </del>         |                                 |                                    | Silverado                             |
|                   | 3<br>4      | 100044           | 285<br>205           | 240<br>160                      | 280<br>200                         | Lynwood<br>Gage                       |
|                   |             |                  | -                    |                                 |                                    |                                       |
| PM-3 Madrid       | 1           | 100034           | 685                  | 640                             | 680                                | Lower San Pedro                       |
|                   | 2           | 100035           | 525                  | 480                             | 520                                | Silverado                             |
|                   | 3           | 100036           | 285                  | 240                             | 280                                | Lynwood                               |
| D14 433 4         | 4           | 100037           | 190                  | 145                             | 185                                | Gage                                  |
| PM-4 Mariner      | 1           | 100038           | 715                  | 670                             | 710                                | Lower San Pedro                       |
|                   | 2           | 100039           | 545                  | 500                             | 540                                | Silverado                             |
|                   | 3           | 100040           | 385                  | 340                             | 380                                | Lynwood                               |
|                   | 4           | 100041           | 245                  | 200                             | 240                                | Gage                                  |
| Rio Hondo #1      | 1           | 100064           | 1150                 | 1110                            | 1130                               | Sunnyside                             |
|                   | 2           | 100065           | 930                  | 910                             | 930                                | Sunnyside                             |
|                   | 3           | 100066           | 730                  | 710                             | 730                                | Sunnyside                             |
|                   | 4           | 100067           | 450                  | 430                             | 450                                | Silverado                             |
|                   | 5           | 100068           | 300                  | 280                             | 300                                | Lynwood                               |
|                   |             |                  | 100                  | 140                             | 160                                | Gardena                               |
|                   | 6           | 100069           | 160                  | 170                             |                                    |                                       |
| South Gate #1     |             | 100069<br>100893 | 1460                 | 1440                            | 1460                               | Sunnyside                             |
| South Gate #1     | 6<br>1      |                  |                      |                                 |                                    | Sunnyside                             |
| South Gate #1     | 6<br>1<br>2 | 100893<br>100894 | 1460<br>1340         | 1440<br>1320                    | 1460<br>1340                       | Sunnyside<br>Sunnyside                |
| South Gate #1     | 6<br>1      | 100893           | 1460                 | 1440                            | 1460                               | Sunnyside                             |

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 4 of 4

| Well Name      | Zone | WRD ID<br>Number | Depth of Well<br>(feet) | Top of<br>Perforation<br>(feet) | Bottom of<br>Perforation<br>(feet) | Aquifer<br>Designation |
|----------------|------|------------------|-------------------------|---------------------------------|------------------------------------|------------------------|
| Westchester #1 | 1    | 101776           | 860                     | 740                             | 760                                | Pico Formation         |
|                | 2    | 101777           | 580                     | 560                             | 580                                | Lower San Pedro        |
|                | 3    | 101778           | 475                     | 455                             | 475                                | Silverado              |
|                | 4    | 10179            | 330                     | 310                             | 330                                | Lynwood                |
|                | 5    | 101780           | 235                     | 215                             | 235                                | Gage                   |
| Whittier #1    | 1    | 101735           | 1298                    | 1180                            | 1200                               | Pico Formation         |
|                | 2    | 101736           | 940                     | 920                             | 940                                | Sunnyside              |
|                | 3    | 101737           | 620                     | 600                             | 620                                | Silverado              |
|                | 4    | 101738           | 470                     | 450                             | 470                                | Jefferson              |
|                | 5    | 101739           | 220                     | 200                             | 220                                | Gage                   |
| Willowbrook #1 | 1    | 100016           | 905                     | 885                             | 905                                | Pico Formation         |
|                | 2    | 100017           | 520                     | 500                             | 520                                | Silverado              |
|                | 3    | 100018           | 380                     | 360                             | 380                                | Lynwood                |
|                | 4    | 100019           | 220                     | 200                             | 220                                | Gage                   |
| Wilmington #1  | 1    | 100070           | 1040                    | 915                             | 935                                | Sunnyside              |
|                | 2    | 100071           | 800                     | 780                             | 800                                | Sunnyside              |
|                | 3    | 100072           | 570                     | 550                             | 570                                | Silverado              |
|                | 4    | 100073           | 245                     | 225                             | 245                                | Lynwood                |
|                | 5    | 100074           | 140                     | 120                             | 140                                | Gage                   |
| Wilmington #2  | 1    | 100075           | 1030                    | 950                             | 970                                | Sunnyside              |
|                | 2    | 100076           | 775                     | 755                             | 775                                | Silverado              |
|                | 3    | 100077           | 560                     | 540                             | 560                                | Lynwood                |
|                | 4    | 100078           | 410                     | 390                             | 410                                | Lynwood                |
|                | 5    | 100079           | 140                     | 120                             | 140                                | Gage                   |

TABLE 2.1
SUMMARY OF SPREADING OPERATIONS AT MONTEBELLO FOREBAY

(Acre-feet)

|         |           | Rio H                    | anda   |           | San Gabriel |                     |        | Total Recharge |          |          |         |         |
|---------|-----------|--------------------------|--------|-----------|-------------|---------------------|--------|----------------|----------|----------|---------|---------|
| Water   | (:        |                          |        | XX71-:44: | (include    | es unlined ri       |        | roading        |          | I Otal K | echarge |         |
| Year    | (includes | Spreading C<br>Narrows R |        | wnittier  | (Include    | s unimed 11<br>Grou | -      | reauing        |          |          |         |         |
| 1 cai   | Imported  | Recycled                 | Local  | Total     | Imported    |                     | Local  | Total          | Imported | Recycled | Local   | Total   |
| 1963/64 | 44,366    | 4,758                    | 6,013  | 55,137    | 40,150      | 4,145               | 3,979  | 48,274         | 84,516   | 8,903    | 9,992   | 103,411 |
| 1964/65 | 64,344    | 2,501                    | 8,616  | 75,461    | 69,995      | 4,867               | 4,481  | 79,343         | 134,339  | 7,368    | 13,097  | 154,804 |
| 1965/66 | 62,067    | 9,984                    | 31,317 | 103,368   | 32,125      | 3,129               | 14,433 | 49,687         | 94,192   | 13,113   | 45,750  | 153,055 |
| 1966/67 | 46,322    | 14,117                   | 37,428 | 97,867    | 20,813      | 2,106               | 22,392 | 45,311         | 67,135   | 16,223   | 59,820  | 143,178 |
| 1967/68 | 65,925    | 16,299                   | 27,885 | 110,109   | 12,402      | 1,975               | 11,875 | 26,252         | 78,327   | 18,274   | 39,760  | 136,361 |
| 1968/69 | 13,018    | 6,105                    | 69,055 | 88,178    | 4,895       | 7,772               | 50,106 | 62,773         | 17,913   | 13,877   | 119,161 | 150,951 |
| 1969/70 | 25,474    | 13,475                   | 24,669 | 63,618    | 35,164      | 3,683               | 28,247 | 67,094         | 60,638   | 17,158   | 52,916  | 130,712 |
| 1970/71 | 41,913    | 11,112                   | 24,384 | 77,409    | 21,211      | 8,367               | 21,735 | 51,313         | 63,124   | 19,479   | 46,119  | 128,722 |
| 1971/72 | 15,413    | 12,584                   | 10,962 | 38,959    | 14,077      | 4,959               | 6,218  | 25,254         | 29,490   | 17,543   | 17,180  | 64,213  |
| 1972/73 | 47,712    | 12,238                   | 33,061 | 93,011    | 32,823      | 9,767               | 12,016 | 54,606         | 80,535   | 22,005   | 45,077  | 147,617 |
| 1973/74 | 40,593    | 9,574                    | 18,421 | 68,588    | 34,271      | 10,516              | 8,544  | 53,331         | 74,864   | 20,090   | 26,965  | 121,919 |
| 1974/75 | 29,173    | 11,359                   | 16,542 | 57,075    | 32,974      | 8,084               | 10,360 | 51,418         | 62,147   | 19,443   | 26,902  | 108,493 |
| 1975/76 | 14,783    | 8,371                    | 10,503 | 33,657    | 19,611      | 10,297              | 7,763  | 37,671         | 34,394   | 18,668   | 18,266  | 71,328  |
| 1976/77 | 11,349    | 3,195                    | 7,753  | 22,297    | 2,548       | 15,707              | 5,165  | 23,420         | 13,897   | 18,902   | 12,918  | 45,717  |
| 1977/78 | 19,112    | 7,424                    | 53,086 | 79,622    | 11,249      | 9,938               | 74,967 | 96,154         | 30,361   | 17,362   | 128,053 | 175,776 |
| 1978/79 | 27,486    | 6,233                    | 36,659 | 70,377    | 15,143      | 14,367              | 17,250 | 46,760         | 42,629   | 20,600   | 53,909  | 117,137 |
| 1979/80 | 11,229    | 8,082                    | 54,416 | 73,726    | 6,602       | 14,549              | 39,753 | 60,904         | 17,831   | 22,631   | 94,169  | 134,630 |
| 1980/81 | 43,040    | 9,177                    | 38,363 | 90,581    | 13,823      | 16,283              | 8,860  | 38,966         | 56,863   | 25,460   | 47,223  | 129,547 |
| 1981/82 | 19,299    | 9,667                    | 37,730 | 66,696    | 11,239      | 19,143              | 8,283  | 38,665         | 30,538   | 28,810   | 46,013  | 105,361 |
| 1982/83 | 3,203     | 7,512                    | 89,153 | 99,868    | 5,975       | 9,419               | 36,893 | 52,287         | 9,178    | 16,931   | 126,046 | 152,155 |
| 1983/84 | 18,815    | 9,647                    | 38,395 | 66,857    | 912         | 17,371              | 18,667 | 36,950         | 19,727   | 27,018   | 57,062  | 103,807 |
| 1984/85 | 33,364    | 7,848                    | 23,614 | 64,826    | 3,879       | 12,930              | 10,620 | 27,429         | 37,243   | 20,778   | 34,234  | 92,255  |
| 1985/86 | 8,128     | 9,234                    | 51,913 | 69,275    | 10,927      | 16,806              | 13,045 | 40,778         | 19,055   | 26,040   | 64,958  | 110,053 |
| 1986/87 |           | 12,234                   |        |           | 64,575      | 87,921              |        |                | 64,575   | 100,155  | 16,700  | 181,431 |
| 1987/88 | 16,105    | 12,560                   | 22,508 | 51,173    | 6,529       | 24,678              | 22,125 | 53,332         | 22,634   | 37,238   | 44,633  | 104,505 |
| 1988/89 |           | 26,568                   |        |           | 63,216      | 25,981              |        |                | 63,216   | 52,548   | 24,200  | 139,964 |
| 1989/90 | 7,079     | 25,629                   |        |           | 72,196      | 24,560              |        |                | 79,275   | 50,188   | 26,400  | 155,864 |
| 1990/91 | 33,320    | 20,927                   |        |           | 34,215      | 33,045              |        |                | 67,536   | 53,972   | 18,300  | 139,808 |
| 1991/92 | 28,695    | 19,156                   |        |           | 58,381      | 28,679              |        |                | 87,077   | 47,835   | 71,000  | 205,911 |
| 1992/93 | 4,306     | 18,526                   |        |           | 26,596      | 32,041              |        |                | 30,902   | 50,567   | 107,700 | 189,169 |
| 1993/94 | 7,599     | 26,654                   |        |           | 25,893      | 27,361              |        |                | 33,492   | 54,015   | 36,800  | 124,307 |
| 1994/95 | 3,827     | 16,397                   |        |           | 25,227      | 22,861              |        |                | 29,054   | 39,258   | 92,100  | 160,411 |
| 1995/96 | 12,304    | 24,154                   | 41,514 | 77,972    | 3,899       | 26,502              | 13,709 | 44,110         | 16,203   | 50,656   | 55,223  | 122,082 |
| 1996/97 | 12,652    | 17,899                   | 33,658 | 64,209    | 4,732       | 28,085              | 17,715 | 50,532         | 17,384   | 45,984   | 51,373  | 114,741 |
| 1997/98 | 889       | 14,984                   | 52,958 | 68,831    | -           | 19,594              | 32,580 | 52,174         | 889      | 34,578   | 85,538  | 121,005 |
| 1998/99 |           | 23,102                   | 14,840 | 37,942    | -           | 18,099              | 11,990 | 30,089         | -        | 41,201   | 26,830  | 68,031  |
| 1999/00 | 43,441    | 16,093                   | 5,700  | 65,234    | 1,596       | 27,049              | 15,036 | 43,681         | 45,037   | 43,142   | 20,736  | 108,915 |
| 2000/01 |           |                          |        |           |             |                     |        |                | 23,451   | 43,778   | 42,290  | 109,519 |
| 2001/02 |           |                          |        | 72,874    |             |                     |        | 47,597         | 41,268   | 60,596   | 18,607  | 120,471 |
| 2002/03 |           |                          |        | 83,757    |             |                     |        | 39,606         | 22,366   | 42,640   | 58,357  | 123,363 |
| 2003/04 |           |                          |        | 64,399    |             |                     |        | 38,512         | 27,520   | 44,924   | 30,467  | 102,911 |

#### Notes

<sup>1)</sup> These amounts may differ from those shown in WRD's Annual Engineering Survey and Report (ESR). The ESR reflects only water that WRD purchased for replenishment. However, some of this water may percolate or evaporate in San Gabriel Valley before it reaches the spreading grounds. Other entities such as LACDPW or the Main San Gabriel Basin Watermaster may also purchase replenishment water that is spread and accounted for in the above table. Recycled water is also provided by CSDLAC's Pomona treatment plant and is not paid for by WRD. This table reflects water which was actually conserved in the spreading grounds as reported by LACDPW.

<sup>2)</sup> Data for shaded areas in the above table were not available from LACDPW. In recent years, only total system recharge volumes could be reported, not relative imported/recycled/local volumes. Corresponding local water recharge volumes were calculated by subtracting imported and reclaimed water volumes from the total volume.

## TABLE 2.2 HISTORICAL QUANTITIES OF ARTIFICIAL REPLENISHMENT WATER AT SEAWATER INTRUSION BARRIERS

(Acre-feet)

| WATER              | WEST CO          | DAST BASIN | BARRIER          | DOMINGUEZ GAP | ALAN           | MITOS BARRI | ER (a)         | TOTAL            |
|--------------------|------------------|------------|------------------|---------------|----------------|-------------|----------------|------------------|
| YEAR               | Imported         | Recycled   | Total            | BARRIER       | WRD            | OCWD        | Total          |                  |
| 1952/53            | 1,140            |            | 1,140            |               |                |             |                | 1,140            |
| 1953/54            | 3,290            |            | 3,290            |               |                |             |                | 3,290            |
| 1954/55            | 2,740            |            | 2,740            |               |                |             |                | 2,740            |
| 1955/56            | 2,840            |            | 2,840            |               |                |             |                | 2,840            |
| 1956/57            | 3,590            |            | 3,590            |               |                |             |                | 3,590            |
| 1957/58            | 4,330            |            | 4,330            |               |                |             |                | 4,330            |
| 1958/59            | 3,700            |            | 3,700            |               |                |             |                | 3,700            |
| 1959/60            | 3,800            |            | 3,800            |               |                |             |                | 3,800            |
| 1960/61            | 4,480            |            | 4,480            |               |                |             |                | 4,480            |
| 1961/62            | 4,510            |            | 4,510            |               |                |             |                | 4,510            |
| 1962/63            | 4,200            |            | 4,200            |               |                |             |                | 4,200            |
| 1963/64            | 10,450           |            | 10,450           |               |                |             |                | 10,450           |
| 1964/65            | 33,020           |            | 33,020           |               | 2,760          | 200         | 2,960          | 35,980           |
| 1965/66            | 44,390           |            | 44,390           |               | 3,370          | 350         | 3,720          | 48,110           |
| 1966/67            | 43,060           |            | 43,060           |               | 3,390          | 490         | 3,880          | 46,940           |
|                    |                  |            |                  |               |                |             |                |                  |
| 1967/68<br>1968/69 | 39,580<br>36,420 |            | 39,580<br>36,420 |               | 4,210<br>4,310 | 740<br>950  | 4,950<br>5,260 | 44,530<br>41.680 |
| 1968/69            | 29,460           |            |                  | +             | 3,760          | 720         |                | 33,940           |
|                    |                  |            | 29,460           | 2 200         |                |             | 4,480          |                  |
| 1970/71            | 29,870           |            | 29,870           | 2,200         | 3,310          | 820         | 4,130          | 36,200           |
| 1971/72            | 26,490           |            | 26,490           | 9,550         | 4,060          | 930         | 4,990          | 41,030           |
| 1972/73            | 28,150           |            | 28,150           | 8,470         | 4,300          | 880         | 5,180          | 41,800           |
| 1973/74            | 27,540           |            | 27,540           | 7,830         | 6,140          | 1,150       | 7,290          | 42,660           |
| 1974/75            | 26,430           |            | 26,430           | 5,160         | 4,440          | 720         | 5,160          | 36,750           |
| 1975/76            | 35,220           |            | 35,220           | 4,940         | 4,090          | 570         | 4,660          | 44,820           |
| 1976/77            | 34,260           |            | 34,260           | 9,280         | 4,890          | 880         | 5,770          | 49,310           |
| 1977/78            | 29,640           |            | 29,640           | 5,740         | 4,020          | 830         | 4,850          | 40,230           |
| 1978/79            | 23,720           |            | 23,720           | 5,660         | 4,220          | 900         | 5,120          | 34,500           |
| 1979/80            | 28,630           |            | 28,630           | 4,470         | 3,560          | 580         | 4,140          | 37,240           |
| 1980/81            | 26,350           |            | 26,350           | 3,550         | 3,940          | 530         | 4,470          | 34,370           |
| 1981/82            | 24,640           |            | 24,640           | 4,720         | 4,540          | 390         | 4,930          | 34,290           |
| 1982/83            | 33,950           |            | 33,950           | 6,020         | 3,270          | 1,940       | 5,210          | 45,180           |
| 1983/84            | 28,000           |            | 28,000           | 7,640         | 2,440          | 1,400       | 3,840          | 39,480           |
| 1984/85            | 25,210           |            | 25,210           | 7,470         | 3,400          | 1,450       | 4,850          | 37,530           |
| 1985/86            | 20,260           |            | 20,260           | 6,160         | 3,410          | 1,860       | 5,270          | 31,690           |
| 1986/87            | 26,030           |            | 26,030           | 6,230         | 4,170          | 2,750       | 6,920          | 39,180           |
| 1987/88            | 24,270           |            | 24,270           | 7,050         | 3,990          | 2,170       | 6,160          | 37,480           |
| 1988/89            | 22,740           |            | 22,740           | 5,220         | 3,900          | 1,680       | 5,580          | 33,540           |
| 1989/90            | 20,279           |            | 20,279           | 5,736         | 4,110          | 2,000       | 6,110          | 32,125           |
| 1990/91            | 16,039           |            | 16,039           | 7,756         | 4,096          | 1,818       | 5,914          | 29,709           |
| 1991/92            | 22,180           |            | 22,180           | 6,894         | 4,172          | 1,553       | 5,725          | 34,799           |
| 1992/93            | 21,516           |            | 21,516           | 4,910         | 3,350          | 1,567       | 4,917          | 31,343           |
| 1993/94            | 15,482           |            | 15,482           | 5,524         | 2,794          | 1,309       | 4,103          | 25,109           |
| 1994/95            | 14,237           | 1,480      | 15,717           | 4,989         | 2,883          | 889         | 3,772          | 24,478           |
| 1995/96            | 12,426           | 4,170      | 16,596           | 5,107         | 3,760          | 2,010       | 5,770          | 27,473           |
| 1996/97            | 11,372           | 6,241      | 17,613           | 5,886         | 3,854          | 1,751       | 5,605          | 29,103           |
| 1997/98            | 8,173            | 8,306      | 16,479           | 3,771         | 3,677          | 1,503       | 5,180          | 25,430           |
| 1998/99            | 10,125           | 6,973      | 17,098           | 4,483         | 4,012          | 1,689       | 5,701          | 27,282           |
| 1999/00            | 11,172           | 7,460      | 18,632           | 6,010         | 4,028          | 1,709       | 5,737          | 30,379           |
| 2000/01            | 13,988           | 6,838      | 20,826           | 3,923         | 3,710          | 1,923       | 5,633          | 30,382           |
| 2001/02            | 12,724           | 7,276      | 20,000           | 5,459         | 3,961          | 2,232       | 6,193          | 31,652           |
| 2002/03            | 10,419           | 6,192      | 16,611           | 8,056         | 3,287          | 1,197       | 4,484          | 29,151           |
| 2003/04            | 9,304            | 3,669      | 12,973           | 6,089         | 3,876          | 2,092       | 5,968          | 25,030           |

TABLE 2.3
WATER QUALITY OF REPLENISHMENT WATER, WATER YEAR 2003-2004

| Constituent                  | Units | Treated Colorado River/State Project Water <sup>a</sup> 2003 <sup>d</sup> | Untreated<br>Colorado<br>River<br>Water <sup>b</sup><br>2003 <sup>d</sup> | Untreated<br>State Project<br>Water <sup>b</sup><br>2003 <sup>d</sup> | West Basin<br>MWD WRP <sup>c</sup><br>2003 <sup>c</sup> | Whittier<br>Narrows<br>WRP <sup>b</sup><br>2002-2003 <sup>f</sup> | San Jose<br>Creek East<br>WRP <sup>b</sup><br>2002-2003 <sup>f</sup> | San Jose<br>Creek West<br>WRP <sup>b</sup><br>2002-2003 <sup>f</sup> | Pomona<br>WRP <sup>b</sup><br>2002-2003 <sup>f</sup> | Stormwater <sup>g</sup><br>2002-2003 |
|------------------------------|-------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| Total Dissolved Solids (TDS) | mg/L  | 387/301                                                                   | 593                                                                       | 242                                                                   | 48                                                      | 523                                                               | 632                                                                  | 527                                                                  | 538                                                  | 253                                  |
| Hardness                     | mg/L  | 164/120                                                                   | 288                                                                       | 99                                                                    | 26                                                      | 178                                                               | 198                                                                  | 190                                                                  | 204                                                  | 125                                  |
| Sulfate                      | mg/L  | 111/48                                                                    | 232                                                                       | 33                                                                    | 9.1                                                     | 91                                                                | 124                                                                  | 78                                                                   | 61                                                   | 50                                   |
| Chloride                     | mg/L  | 79/82                                                                     | 81                                                                        | 64                                                                    | 6                                                       | 98                                                                | 159                                                                  | 105                                                                  | 135                                                  | 36                                   |
| Nitrogen (Nitrate as N)      | mg/L  | 0.5/0.6                                                                   | ND                                                                        | 0.70                                                                  | ND                                                      | 5.37                                                              | 3.45                                                                 | 3.92                                                                 | 2.15                                                 | 0.95                                 |
| Iron                         | mg/L  | ND/ND                                                                     | ND                                                                        | 0.124                                                                 | ND                                                      | < 0.05                                                            | 0.08                                                                 | < 0.06                                                               | < 0.05                                               | 0.43                                 |
| Manganese                    | ug/L  | ND/ND                                                                     | ND                                                                        | 0.022                                                                 | ND                                                      | <7                                                                | 30                                                                   | 10                                                                   | <7                                                   | NA                                   |
| Trichloroethylene (TCE)      | ug/L  | ND/ND                                                                     | ND                                                                        | ND                                                                    | ND                                                      | < 0.5                                                             | < 0.5                                                                | < 0.5                                                                | < 0.5                                                | NA                                   |
| Tetrachloroethylene (PCE)    | ug/L  | ND/ND                                                                     | ND                                                                        | ND                                                                    | ND                                                      | < 0.5                                                             | < 0.5                                                                | < 0.6                                                                | < 0.5                                                | NA                                   |
| Total Organic Carbon (TOC)   | mg/L  | 2.1/2.1                                                                   | 3.4                                                                       | 3.7                                                                   | 0.2                                                     | 6.63                                                              | 7.95                                                                 | 8                                                                    | 9.6                                                  | 7.54                                 |
| Perchlorate                  | ug/L  | ND/ND                                                                     | ND                                                                        | ND                                                                    | NA                                                      | NA                                                                | NA                                                                   | NA                                                                   | NA                                                   | NA                                   |

#### Notes:

- a = Used at the seawater intrusion barriers
- b = Used at the Montebello Forebay spreading grounds
- c = Used at the West Coast Basin Barrier
- d = Average concentration data from Metropolitan Water District of Southern California (MWD), for calendar year 2003
- e = Average concentration data from West Basin Municipal Water District (West Basin MWD), for calendar year 2003
- f = Average concentration data from County Sanitation Districts of Los Angeles County (CSDLAC), for WY 2002-2003
- g = Average concentration data from LACDPW, for samples collected from San Gabriel River WY 2002-2003

#### Sources of data:

2003 Water Quality Report to MWD Member Agencies

Montebello Forebay Groundwater Recharge annual report (CSDLAC, December 2003)

West Basin Water Recycling Facility Annual Report (West Basin MWD, 2003)

Los Angeles County Stormwater Monitoring Report, WY 2002-2003 (LACDPW Web Site)

### TABLE 3.1 HISTORICAL AMOUNTS OF GROUNDWATER PRODUCTION

(Acre-feet)

|         |         | WEST   |         |
|---------|---------|--------|---------|
| WATER   | CENTRAL | COAST  |         |
| YEAR    | BASIN   | BASIN  | TOTAL   |
| 1960/61 | 292,500 | 61,900 | 354,400 |
| 1961/62 | 275,800 | 59,100 | 334,900 |
| 1962/63 | 225,400 | 59,100 | 284,500 |
| 1963/64 | 219,100 | 61,300 | 280,400 |
| 1964/65 | 211,600 | 59,800 | 271,400 |
| 1965/66 | 222,800 | 60,800 | 283,600 |
| 1966/67 | 206,700 | 62,300 | 269,000 |
| 1967/68 | 220,100 | 61,600 | 281,700 |
| 1968/69 | 213,800 | 61,600 | 275,400 |
| 1969/70 | 222,200 | 62,600 | 284,800 |
| 1970/71 | 211,600 | 60,900 | 272,500 |
| 1971/72 | 216,100 | 64,800 | 280,900 |
| 1972/73 | 205,600 | 60,300 | 265,900 |
| 1973/74 | 211,300 | 55,000 | 266,300 |
| 1974/75 | 213,100 | 56,700 | 269,800 |
| 1975/76 | 215,300 | 59,400 | 274,700 |
| 1976/77 | 211,500 | 59,800 | 271,300 |
| 1977/78 | 196,600 | 58,300 | 254,900 |
| 1978/79 | 207,000 | 58,000 | 265,000 |
| 1979/80 | 209,500 | 57,100 | 266,600 |
| 1980/81 | 211,915 | 57,711 | 269,626 |
| 1981/82 | 202,587 | 61,874 | 264,461 |
| 1982/83 | 194,548 | 57,542 | 252,090 |
| 1983/84 | 196,660 | 51,930 | 248,590 |
| 1984/85 | 193,085 | 52,746 | 245,831 |
| 1985/86 | 195,889 | 52,762 | 248,650 |
| 1986/87 | 196,587 | 48,026 | 244,613 |
| 1987/88 | 194,561 | 43,833 | 238,394 |
| 1988/89 | 200,105 | 44,162 | 244,267 |
| 1989/90 | 197,811 | 47,904 | 245,715 |
| 1990/91 | 186,977 | 53,075 | 240,052 |
| 1991/92 | 196,382 | 55,964 | 252,346 |
| 1992/93 | 150,386 | 40,058 | 190,444 |
| 1993/94 | 156,930 | 41,768 | 198,697 |
| 1994/95 | 181,164 | 41,396 | 222,560 |
| 1995/96 | 182,067 | 52,759 | 234,826 |
| 1996/97 | 187,452 | 52,581 | 240,033 |
| 1997/98 | 188,988 | 51,841 | 240,829 |
| 1998/99 | 204,418 | 51,331 | 255,749 |
| 1999/00 | 197,946 | 53,579 | 251,525 |
| 2000/01 | 195,255 | 53,842 | 249,047 |
| 2001/02 | 199,900 | 50,066 | 249,966 |
| 2002/03 | 190,082 | 51,789 | 241,871 |
| 2003/04 | 200,332 | 47,965 | 248,297 |

#### TABLE 3.2 GROUNDWATER ELEVATIONS, WATER YEAR 2003-2004 Page 1 of 5

|                            | ZONE 1                   | ZONE 2                    | ZONE 3    | ZONE 4    | ZONE 5      | ZONE 6                 |
|----------------------------|--------------------------|---------------------------|-----------|-----------|-------------|------------------------|
| Carson #1                  | ZOT(E 1                  | ZOT(ZZ                    | ZOT(E U   | ZOINE I   |             | Point Elevation: 24.16 |
| Depth of Well              | 990-1010                 | 740-760                   | 460-480   | 250-270   |             |                        |
| Aquifer Name               | Sunnyside                | Silverado                 | Lynwood   | Gage      |             |                        |
| 11/26/2003                 | -61.62                   | -60.9                     | -23.81    | -21.78    |             |                        |
| 12/31/2003                 | -61.06                   | -60.32                    | -23.59    | -21.66    |             |                        |
| 3/29/2004                  | -60.23                   |                           | -23.49    | -21.6     |             |                        |
| 4/8/2004                   | -58.18                   | -57.43                    | -23.28    | -21.4     |             |                        |
| 6/28/2004                  | -55.92                   | -55.27                    | -22.39    | -20.63    |             |                        |
| 7/13/2004                  | -56.91                   | -56.02                    | -22.47    | -20.69    |             |                        |
| 9/8/2004                   | -57.39                   | -56.47                    | -22.57    | -20.68    |             |                        |
| 9/29/2004                  | -57.95                   | -57.02                    | -22.75    | -20.9     |             |                        |
| Carson #2                  |                          |                           |           | •         | Reference l | Point Elevation: 39.81 |
| Depth of Well              | 1230-1250                | 850-870                   | 600-620   | 450-470   | 230-250     |                        |
| Aquifer Name               | Sunnyside                | Silverado                 | Silverado | Lynwood   | Gage        |                        |
| 12/31/2003                 | -47.39                   | -41.63                    | -41.27    | -37.92    | -35.3       |                        |
| 3/30/2004                  | -46.61                   | -42.53                    | -42.06    | -37.84    | -34.9       |                        |
| 5/11/2004                  | -44.85                   | -40.81                    | -40.38    | -36.51    | -33.78      |                        |
| 6/28/2004                  | -44.14                   | -38.67                    | -38.35    | -35.28    | -32.93      |                        |
| 9/30/2004                  | -44.64                   | -39.58                    | -39.23    | -37.02    | -34.75      |                        |
| Cerritos #1                |                          |                           |           |           |             | Point Elevation: 40.72 |
| Depth of Well              | 1155-1175                | 1000-1020                 | 610-630   | 270-290   | 180-200     | 125-135                |
| Aquifer Name               | Sunnyside                | Sunnyside                 | Lynwood   | Gage      | Artesia     | Artesia                |
| 10/27/2003                 | -36.23                   | -35.46                    | -36.52    | 12.06     | 17.03       | 17.11                  |
| 12/30/2003                 | -28.7                    | -31.06                    | -24.93    | 14.92     | 19.26       | 19.3                   |
| 1/4/2004                   | -28.19                   | -30.51                    | -25.11    | 15.12     | 19.48       | 19.52                  |
| 2/27/2004                  | -21.35                   | -24.46                    | -23.32    | 16.62     | 20.62       | 20.69                  |
| 3/9/2004                   | -20.5                    | -22.59                    | -21.93    | 16.63     | 20.6        | 20.64                  |
| 3/30/2004                  | -24.85                   | -26.61                    | -26.13    | 15.77     | 19.77       | 19.89                  |
| 7/1/2004                   | -42.15                   | -45.65                    | -46.06    | 8.57      | 13.5        | 13.58                  |
| 9/14/2004                  | -50.8                    | -56.93                    | -50.4     | 7.8       | 13.38       | 13.43                  |
| 9/27/2004                  | -48.42                   | -55.97                    | -50.35    | 7.92      | 13.37       | 13.41                  |
| Cerritos #2                |                          |                           |           |           |             | Point Elevation: 75.27 |
| Depth of Well              | 1350-1370                | 915-935                   | 740-760   | 490-510   | 350-370     | 150-170                |
| Aquifer Name               | Sunnyside                | Silverado                 | Silverado | Jefferson | Gage        | Gaspur                 |
| 12/31/2003                 | -7.61                    | -13.93                    | -16.69    | 0.5       | 24.69       | 31.87                  |
| 3/29/2004                  | -1.9                     | -12.86                    | -6.91     | 4.22      | 25.92       | 32.26                  |
| 5/18/2004                  | -4.68                    | -24.66                    | -28.31    | -6.98     | 22.22       | 31.17                  |
| 6/28/2004                  | -10.82                   | -26.47                    | -29.69    | -7.9      | 20.85       | 29.88                  |
| 9/16/2004                  | -20.9                    | -35.2                     | -34.38    | -11.44    | 19.63       | 40.06                  |
| Chandler #3                | 241.262                  | 165 102                   |           |           | Reference   | Point Elevation: 153.2 |
| Depth of Well              | 341-363                  | 165-192<br>Gage/Lynw/Silv |           |           |             |                        |
| Aquifer Name<br>12/29/2003 | Gage/Lynw/Silv<br>-23.88 | -23.7                     |           |           |             |                        |
| 03/29/2004                 | -24.1                    | -23.72                    |           |           |             |                        |
| 06/29/2004                 | -24.1                    | -23.72                    |           |           |             |                        |
| 09/30/2004                 | -23.56                   | -23.39                    |           |           |             |                        |
| Commerce #1                | -20.00                   | -20.03                    |           |           | Reference D | oint Elevation: 170.09 |
| Depth of Well              | 1330-1390                | 940-960                   | 760-780   | 570-590   | 325-345     | 205-225                |
| Aquifer Name               | Pico                     | Sunnyside                 | Sunnyside | Silverado | Hollydale   | Exposition/Gage        |
| 12/29/2003                 | 57.67                    | 55.94                     | 52.48     | 24.89     | 31.34       | 58.31                  |
| 1/4/2004                   | 57.64                    | 56.53                     | 53.26     | 25.96     | 32.4        | 58.48                  |
| 2/4/2004                   | 57.59                    | 56.54                     | 52.9      | 21.8      | 25.18       | 57.96                  |
| 3/30/2004                  | 57.66                    | 59.19                     | 55.84     | 26.59     | 31.43       | 58.37                  |
| 6/29/2004                  | 57.43                    | 55.78                     | 51.57     | 21.62     | 24.86       | 57.32                  |
| 9/27/2004                  | 63.5                     | 51.42                     | 47.17     | 14.28     | 20.71       | 57.11                  |
| Compton #1                 | 05.5                     | V1.12                     | 1/.1/     | 1 11.20   |             | Point Elevation: 67.17 |
| Depth of Well              | 1370-1390                | 1150-1170                 | 800-820   | 460-480   | 325-345     | One Brevation: 07117   |
| Aguifer Name               | Sunnyside                | Sunnyside                 | Silverado | Hollydale | Gage        | †                      |
| 10/1/2003                  | -48.62                   | -48.41                    | -18.83    | -8.08     | -6.84       | †                      |
| 12/29/2003                 | -36.48                   | -36.41                    | -16       | -3.03     | 0.22        | 1                      |
| 3/17/2004                  | -27.83                   | -27.83                    | -13.05    | -0.41     | 0.54        |                        |
| 3/30/2004                  | -23.88                   | -23.87                    | -12.6     | -1.35     | -0.86       |                        |
| 5/19/2004                  | -28.76                   | -15.1                     | -15.1     | -5.86     | -5.33       | 1                      |
| 6/28/2004                  | -41.9                    | -41.71                    | -17.86    | -6.82     | -3.1        | 1                      |
| 7/26/2004                  | -57.01                   | -56.73                    | -20.84    | -9.01     | -5.83       | 1                      |
| 9/23/2004                  | -68.78                   | -68.47                    | -24.99    | -12.11    | -9          |                        |
|                            | 23.70                    | ~~                        | =         |           |             | -                      |

#### TABLE 3.2 GROUNDWATER ELEVATIONS, WATER YEAR 2003-2004 Page 2 of 5

|                           | ZONE 1         | ZONE 1           | ZONE 2            | ZONE 4              | ZONE 5       | ZONE (                        |
|---------------------------|----------------|------------------|-------------------|---------------------|--------------|-------------------------------|
| Downey #1                 | ZONE 1         | ZONE 2           | ZONE 3            | ZONE 4              | ZONE 5       | ZONE 6                        |
| Downey #1  Depth of Well  | 1170-1190      | 940-960          | 580-600           | 370-390             | 250-270      | Point Elevation: 97.21 90-110 |
| Aguifer Name              | Sunnyside      | Silverado        | Silverado         | Hollydale/Jefferson | Exposition   | Gaspur                        |
| 1/5/2004                  | 6.8            | 9.72             | 16.52             | 16.33               | 40.36        | 43.71                         |
| 1/9/2004                  | 7.08           | 9.88             | 16.26             | 15.95               | 40.32        | 43.74                         |
| 3/30/2004                 | 12.4           | 13.41            | 15.28             | 13.58               | 39.65        | 43.53                         |
| 5/25/2004                 | 9.75           | 9.7              | 8.85              | 8.09                | 38.37        | 42.91                         |
| 6/30/2004                 | 6.61           | 7.06             | 10.41             | 23.45               | 36.86        | 42.52                         |
| 9/16/2004                 | -4.17          | -0.6             | 1.61              | 3.99                | 36.76        | 41.9                          |
| 9/22/2004                 | -4.79          | -0.95            | 1.61              | 2.78                | 38.16        | 41.8                          |
| Gardena #1                | 1.72           | 0.55             | 1.01              | 2.70                |              | Point Elevation: 80.79        |
| Depth of Well             | 970-990        | 445-465          | 345-365           | 120-140             | 110101011001 |                               |
| Aguifer Name              | Sunnyside      | Silverado        | Lynwood           | Gage                |              |                               |
| 12/29/2003                | -61.42         | -126.24          | -87.14            | -16.57              |              |                               |
| 3/30/2004                 | -59.74         | -118.98          | -81.07            | -16.23              |              |                               |
| 6/27/2004                 | -59.34         | -124.47          | -88.5             | -16.38              |              |                               |
| 9/13/2004                 | -58.95         | -122.8           | -85.83            | -16.42              |              |                               |
| 9/27/2004                 | -58.96         | -123.76          | -88.46            | -16.47              |              |                               |
| Gardena #2                |                |                  |                   |                     | Reference I  | Point Elevation: 26.74        |
| Depth of Well             | 1275-1335      | 770-790          | 610-630           | 340-360             | 235-255      |                               |
| Aquifer Name              | Sunnyside      | Silverado        | Silverado         | Lynwood             | Gardena      |                               |
| 12/29/2003                | -49.68         | -63.08           | -63.17            | -29.1               | -15.17       |                               |
| 3/16/2004                 | -48.94         | -61.23           | -61.34            | -28.57              | -14.91       |                               |
| 3/29/2004                 | -48.92         | -60.7            | -60.79            | -28.54              | -14.97       |                               |
| 6/27/2004                 | -47.94         | -60.82           | -60.94            | -28.45              | -14.89       |                               |
| 9/14/2004                 | -47.51         | -56.54           | -56.61            | -27.51              | -14.95       |                               |
| 9/26/2004                 | -47.47         | -60.28           | -60.33            | -28.39              | -15.12       |                               |
| Hawthorne #1              |                |                  |                   |                     | Reference I  | Point Elevation: 86.35        |
| Depth of Well             | 910-950        | 710-730          | 520-540           | 400-420             | 240-260      | 110-130                       |
| Aquifer Name              | Pico           | Lower San Pedro  | Lower San Pedro   | Silverado           | Lynwood      | Gage                          |
| 11/4/2003                 | -96.15         | -18.17           | -17.04            | -16.81              | -13.5        | -2.9                          |
| 12/29/2003                | -91.83         | -15.72           | -14.74            | -14.56              | -10.82       | -2.25                         |
| 6/27/2004                 | -102.42        | -17.96           | -16.81            | -16.59              | -12.11       | -2.31                         |
| 9/20/2004                 | -104.52        | -20.85           | -19.74            | -19.54              | -14.22       | -2.91                         |
| Huntington Park #1        |                |                  |                   |                     | Reference Po | oint Elevation: 177.08        |
| Depth of Well             | 890-910        | 690-710          | 420-440           | 275-295             |              |                               |
| Aquifer Name              | Silverado      | Jefferson        | Gage              | Exposition          |              |                               |
| 12/30/2003                | -27.9          | -27.59           | -22.15            | 16.24               |              |                               |
| 2/4/2004                  | -30.02         | -29.87           |                   | 16.42               |              |                               |
| 3/30/2004                 | -27.99         | -29.04           | -24.56            | 16.08               |              |                               |
| 6/28/2004                 | -33.63         | -33.63           | -28.13            | 14.9                |              |                               |
| 9/22/2004                 | -36.32         | -38.45           | -32.04            | 13.9                |              |                               |
| Inglewood #1              |                |                  |                   |                     |              | oint Elevation: 110.56        |
| Depth of Well             | 1380-1400      |                  | 430-450           | 280-300             | 150-170      |                               |
| Aquifer Name              | Pico           |                  | Silverado         | Lynwood             | Gage         |                               |
| 12/29/2003                | -35.72         |                  | -48.39            | -4.4                | 1.08         |                               |
| 3/30/2004                 | -36.46         |                  | -44.55            | -3.66               | 1.26         |                               |
| 6/27/2004                 | -35.39         |                  | -55.45            | -5.01               | 1.2          |                               |
| 9/2/2004                  | -35.98         | -                | -57.1             | -5.39               | 1.02         |                               |
| 9/14/2004                 | -36.5          | -                | -57.22            | -5.39               | 1.08         |                               |
| 9/21/2004<br>Inglewood #2 | -29.99         |                  | -57.67            | -5.6                | 0.88         | oint Elevation: 217.33        |
| Depth of Well             | 800-840        | 450-470          | 330-350           | 225-245             | Kererence Po | mit Elevation: 217.33         |
|                           |                |                  |                   | L                   |              |                               |
| Aquifer Name              | Pico<br>-22.82 | Pico<br>-18.52   | Silverado<br>8 72 | Lynwood             |              |                               |
| 12/29/2003<br>3/30/2004   | -22.82         |                  | -8.72<br>-8.55    | -3.76<br>-3.63      |              |                               |
| 6/27/2004                 | -23.45         | -18.44<br>-18.11 | -8.32             | -3.63<br>-3.47      |              | +                             |
| 9/1/2004                  | -23.45         | -18.11           | -8.32<br>-8.41    | -3.4/               |              |                               |
| 9/30/2004                 | -23.74         | -18.19           | -8.41<br>-8.2     | -3.45               |              | +                             |
| 9/30/2004<br>Lakewood #1  | -23.74         | -10.14           | -0.2              | -3.43               | Reference I  | Point Elevation: 37.91        |
| Depth of Well             | 989-1009       | 640-660          | 450-470           | 280-300             | 140-160      | 70-90                         |
| Aquifer Name              | Sunnyside      | Silverado        | Lynwood           | Gage                | Artesia      | Bellflower                    |
| 12/30/2003                | -50.19         | -45.68           | -44.22            | -25.78              | -12.19       | 11.43                         |
| 3/30/2004                 | -39.71         | -43.68           | -37.17            | -20.22              | -8.46        | 12.25                         |
| 5/24/2004                 | -85.54         | -62.21           | -60.12            | -20.22              | -15.1        | 10.31                         |
| 6/29/2004                 | -70.12         | -59.31           | -57.66            | -29.5               | -15.69       | 10.86                         |
| 9/20/2004                 | -120.36        | -82.42           | -79.78            | -36.99              | -20.34       | 10.1                          |
| 712012004                 | -140.30        | -02.42           | -17.10            | -30.33              | -20.34       | 10.1                          |

#### TABLE 3.2 GROUNDWATER ELEVATIONS, WATER YEAR 2003-2004 Page 3 of 5

|               | ZONE 1             | ZONE 2          | ZONE 3           | ZONE 4    | ZONE 5      | ZONE 6                 |
|---------------|--------------------|-----------------|------------------|-----------|-------------|------------------------|
| La Mirada #1  |                    |                 |                  |           |             | oint Elevation: 75.85  |
| Depth of Well | 1130-1150          | 965-985         | 690-710          | 470-490   | 225-245     |                        |
| Aquifer Name  | Sunnyside          | Silverado       | Lynwood          | Jefferson | Gage        |                        |
| 10/27/2003    | -28.25             | -30.08          | -29.55           | -42.37    | -23.56      |                        |
| 12/30/2003    | -13.81             | -16.45          | -17.71           | -33.93    | -14.59      |                        |
| 3/29/2004     | -4.97              | -4.97           | -13.52           | -34.48    | -14.1       |                        |
| 6/28/2004     | -11                | -10.96          | -23.62           | -46.49    | -25.84      |                        |
| 9/14/2004     | -26.51             | -26.59          | -33.8            | -50.96    | -30.08      |                        |
| 9/30/2004     | -28.95             | -29.35          | -34.45           | -44.8     | -28.81      |                        |
| Lomita #1     |                    |                 |                  |           |             | oint Elevation: 76.91  |
| Depth of Well | 1240-1260          | 700-720         | 550-570          | 400-420   | 220-240     | 100-120                |
| Aquifer Name  | Lower San Pedro    | Silverado       | Silverado        | Silverado | Gage        | Gage                   |
| 12/30/2003    | -34.99             | -26.67          | -24.91           | -26.49    | -22.2       | -25.21                 |
| 3/29/2004     | -32.41             | -25.62          | -24.02           | -25.67    | -22.04      | -24.32                 |
| 6/29/2004     | -33.41             | -25.58          | -24.33           | -25.43    | -21.76      | -24.48                 |
| 9/14/2004     | -37.52             | -27.91          | -25.78           | -25.32    | -22.17      | -26.43                 |
| 9/29/2004     | -35.73             | -26.66          | -25              | -25.63    | -21.69      | -24.83                 |
| Long Beach #1 | -55.75             | -20.00          | -23              | -23.03    |             | oint Elevation: 28.69  |
| Depth of Well | 1430-1450          | 1230-1250       | 970-990          | 599-619   | 400-420     | 155-175                |
| Aguifer Name  | Sunnyside          | Sunnyside       | Silverado        | Lynwood   | Gage        | Artesia                |
|               | ,                  |                 |                  | •         | ·           |                        |
| 10/27/2003    | -26.42             | -28.38          | -49.14<br>-46.34 | -32.88    | -28.72      | -12.09                 |
| 11/6/2003     | -23.78             | -25.21          |                  | -33.17    | -29.81      | -10.77                 |
| 12/31/2003    | -16.98             | -18.38          | -30.99           | -27.73    | -26.5       | -5.45                  |
| 4/2/2004      | -6.84              |                 | -19.95           | -21.49    | -20.92      | -6.6                   |
| 4/19/2004     | -4.38              | -5.5            | -22.5            | -21.26    | -19.7       | -7.84                  |
| 5/28/2004     | -6.48              | -8.13           | -39.14           | -32.74    | -32.4       | -16.32                 |
| 6/7/2004      | -8.86              | -10.89          | -41.95           | -35.27    | -35.55      | -17.09                 |
| 7/6/2004      | -17.9              | -20.63          | -54.14           | -41.81    | -42.09      | -19.65                 |
| 7/12/2004     | -19.32             | -21.82          | -63.25           | -44.36    | -44.35      | -20.48                 |
| 7/22/2004     | -21.76             | -24.42          | -71.15           | -47.72    | -47.21      | -21.9                  |
| 9/14/2004     | -38.09             | -41.24          | -80.51           | -52.05    | -49.73      | -21.86                 |
| Long Beach #2 |                    |                 |                  |           | Reference I | Point Elevation: 42.15 |
| Depth of Well | 970-990            | 720-740         | 450-470          | 280-300   | 160-180     | 95-115                 |
| Aquifer Name  | Sunnyside          | Sunnyside       | Silverado        | Lynwood   | Gage        | Gaspur                 |
| 10/7/2003     | -64.84             | -43.46          | -40.08           | -13.14    | -3.03       | -1.08                  |
| 12/31/2003    | -45.69             | -38.52          | -38.96           | -12.1     | -2.79       | -1.14                  |
| 3/29/2004     | -26.04             | -31.3           | -37.69           | -10.13    | -1.53       | -0.17                  |
| 6/28/2004     | -61.38             | -39.62          | -36.93           | -11.91    | -2.41       | -0.47                  |
| 8/26/2004     | -94.09             | -50.83          | -41.04           | -14.66    | -3.63       | -1.28                  |
| 9/16/2004     | -96.89             | -51.92          | -41.43           | -15.11    | -3.92       | -1.49                  |
| Long Beach #3 |                    |                 |                  | •         | Reference I | Point Elevation: 24.60 |
| Depth of Well | 1350-1390          | 997-1017        | 670-690          | 530-550   | 410-430     |                        |
| Aquifer Name  | Lower San Pedro    | Silverado       | Silverado        | Silverado | Lynwood     |                        |
| 12/31/2003    | -44.75             | -60.6           | -60.64           | -60.8     | -10.5       |                        |
| 3/30/2004     | -44.33             | -59.06          | -59.07           | -59.27    | -10.85      |                        |
| 5/11/2004     | -43.78             | -55.84          | -55.83           | -56.04    | -10.28      |                        |
| 6/7/2004      | -43.48             | -55.11          | -55.11           | -55.3     | -10.25      |                        |
| 7/1/2004      | -43.38             | -55.32          | -55.32           | -55.52    | -10.18      | 1                      |
| 9/15/2004     | -43.32             | -56.12          | -56.79           | -57.21    | -10.92      | <u> </u>               |
| Long Beach #4 |                    | *****           |                  |           |             | Point Elevation: 9.52  |
| Depth of Well | 1200-1220          | 800-820         |                  |           | Tatoronee   |                        |
| Aguifer Name  | Pico               | Lower San Pedro |                  | <u> </u>  |             |                        |
| 12/31/2003    | -44.17             | -21.32          |                  | <u> </u>  |             |                        |
| 03/30/2004    | -44.24             | -24.15          |                  |           |             | 1                      |
| 07/01/2004    | -42.32             | -22.12          |                  | +         |             | +                      |
| 09/28/2004    | -42.71             | -23.88          |                  | +         |             | +                      |
| Long Beach #6 | - <del>4</del> ∠./ | -20.00          |                  |           | Poforon - I | Point Elevation: 32.53 |
| Depth of Well | 1400 1510          | 930-950         | 740-760          | 480-500   | 380-400     | 220-240                |
|               |                    |                 |                  |           |             | +                      |
| Aquifer Name  | Lower San Pedro    | Sunnyside       | Sunnyside        | Silverado | Lynwood     | Gage                   |
| 12/29/2003    | -24.97             | -32.71          | -32.9            | -41.33    | -41.26      | -29.27                 |
| 3/29/2004     | -16.03             | -17.53          | -17.35           | -23.4     | -23.38      | -25.25                 |
| 7/1/2004      | -20.13             | -42.57          | -44.18           | -78.71    | -78.86      | -32.7                  |
| 8/10/2004     | -34.35             | -65.24          | -67.07           | -118.47   | -118.38     | -38.76                 |
| 8/25/2004     | -39.63             | -69.97          | -71.27           | -120.9    | -120.76     | -39.46                 |
| 9/1/2004      | -41.65             | -71.09          | -72.8            | -121.67   | -121.53     | -39.76                 |
| 9/16/2004     | -45.43             | -73.83          | -75.46           | -123.32   | -123.19     | -40.53                 |

#### TABLE 3.2 GROUNDWATER ELEVATIONS, WATER YEAR 2003-2004 Page 4 of 5

|                | ZONE 1          | ZONE 2    | ZONE 3    | ZONE 4    | ZONE 5      | ZONE 6                 |
|----------------|-----------------|-----------|-----------|-----------|-------------|------------------------|
| Long Beach #8  | ZONE 1          | ZONE 2    | ZOITE 3   | ZONE 4    |             | Point Elevation: 17.78 |
| Depth of Well  | 1435-1455       | 1020-1040 | 780-800   | 635-655   | 415-435     | 165-185                |
| Aguifer Name   | Lower San Pedro | Silverado | Silverado | Silverado | Lynwood     | Gage                   |
| 12/29/2003     | -20.94          | -41.57    | -56.7     | -54.2     | -53.85      | -0.67                  |
| 2/6/2004       | -20.98          | -41.62    | -56.33    | -53.97    | -53.52      | -1.06                  |
| 5/11/2004      | -20.91          | -41.01    | -52.79    | -50.6     | -50.17      | -0.76                  |
| 5/20/2004      | -21.04          | -41.07    | -52.35    | -50.23    | -49.96      | -0.77                  |
| 6/7/2004       | -20.91          | -40.85    | -52.4     | -50.14    | -49.76      | -0.73                  |
| 7/1/2004       | -21.04          | -40.79    | -52.19    | -49.96    | -49.57      | -0.76                  |
| 9/30/2004      | -21.01          | -40.68    | -53.49    | -51.16    | -50.71      | -0.96                  |
| Los Angeles #1 | 21.01           | 10.00     | 55.15     | 51.10     |             | int Elevation: 173.63  |
| Depth of Well  | 1350-1370       | 1080-1100 | 920-940   | 640-660   | 350-370     |                        |
| Aquifer Name   | Pico            | Sunnyside | Silverado | Lynwood   | Gage        |                        |
| 1/12/2004      | -16.39          | -22.08    | -24       | -27.63    | -20.99      |                        |
| 3/30/2004      | -16.19          | -22.01    | -23.76    | -27.89    | -21.1       |                        |
| 6/29/2004      | -15.75          | -22.73    | -24.23    | -28.97    | -21.66      |                        |
| 9/28/2004      | -16.56          | -25.67    | -27.28    | -31.67    | -23.17      |                        |
| Montebello #1  |                 |           |           |           |             | int Elevation: 192.60  |
| Depth of Well  | 960-980         | 690-710   | 500-520   | 370-390   | 210-230     | 90-110                 |
| Aquifer Name   | Pico            | Sunnyside | Silverado | Lynwood   | Gage        | Exposition             |
| 12/31/2003     | 90.13           | 84.72     | 83.93     | 81.18     | 83.38       | DRY                    |
| 3/30/2004      | 98.94           | 99.02     | 98.16     | 93.57     | 87.45       | DRY                    |
| 6/29/2004      | 95.23           | 89.05     | 88.23     | 84.69     | 86.42       | DRY                    |
| 9/22/2004      | 89.88           | 81.07     | 80.22     | 76.85     | 81.52       | DRY                    |
| Norwalk #1     | 03.00           | 01.07     | 00.22     | 70.00     |             | oint Elevation: 95.44  |
| Depth of Well  | 1400-1420       | 990-1010  | 720-740   | 430-450   | 220-240     |                        |
| Aquifer Name   | Sunnyside       | Silverado | Lynwood   | Jefferson | Gage        |                        |
| 12/29/2003     | 35.21           | -4.59     | 13.76     | 6.16      | 6.04        |                        |
| 1/11/2004      | 35.96           | -2.97     | 15.19     | 6.84      | 6.42        |                        |
| 1/12/2004      | 35.92           | -2.91     | 15.29     | 6.48      | 6.21        |                        |
| 3/29/2004      | 40.53           | 3.19      | 18.78     | 7.03      | 7.22        |                        |
| 5/19/2004      | 42.69           | 7.73      | 19.44     | 4.63      | 4.9         |                        |
| 6/28/2004      | 41.72           | 2.67      | 18.74     | -1.28     | 2.79        |                        |
| 9/28/2004      | 34.76           | -11.5     | 6.12      | -1.32     | -0.57       |                        |
| Pico #1        | 2               |           | ****      |           |             | int Elevation: 181.06  |
| Depth of Well  | 860-900         | 460-480   | 380-400   | 170-190   |             |                        |
| Aquifer Name   | Pico            | Silverado | Silverado | Jefferson |             |                        |
| 12/26/2003     | 131.21          | 120.3     | 119.68    |           |             |                        |
| 12/31/2003     | 131.35          | 120.18    | 116.86    | 117.17    |             |                        |
| 3/24/2004      | 138.1           | 136.5     | 136.29    | 135.98    |             |                        |
| 5/25/2004      | 139.65          | 126.68    | 127.63    | 128.88    |             |                        |
| 6/30/2004      | 138.11          | 126.98    | 126.49    | 123.89    |             |                        |
| 9/16/2004      | 134.13          | 107.36    | 105.99    | 113.94    |             |                        |
| 9/30/2004      | 133.21          | 104.79    | 103.55    | 112.58    |             |                        |
| Pico #2        |                 |           |           |           | Reference P | oint Elevation: 149.6  |
| Depth of Well  | 1180-1200       | 830-850   | 560-580   | 320-340   | 235-255     | 100-120                |
| Aquifer Name   | Sunnyside       | Sunnyside | Sunnyside | Silverado | Lynwood     | Gaspur                 |
| 12/30/2003     | 71.54           | 73.81     | 77.55     | 89.19     | 91.12       | 101.02                 |
| 3/31/2004      | 85.23           | 85.91     | 91.19     | 94.93     | 96.17       | 102.39                 |
| 6/16/2004      | 73.23           | 74.77     | 79.21     | 87.78     | 89.12       | 96.12                  |
| 6/30/2004      | 71.43           | 73        | 77.59     | 87.6      | 86.31       | 94.55                  |
| 9/9/2004       | 62.28           | 60.68     | 67.75     | 83.07     | 83.44       | 87.81                  |
| 9/23/2004      | 60.4            | 58.65     | 64.87     | 81.69     | 82.39       | 86.37                  |
| PM-1 Columbia  |                 |           | Į.        | ļ.        | Reference P | oint Elevation: 78.42  |
| Depth of Well  | 555-595         | 460-500   | 240-280   | 160-200   |             |                        |
| Aquifer Name   | Lower San Pedro | Silverado | Lynwood   | Gage      |             |                        |
| 12/30/2003     | -11.98          | -11.02    | -9.56     | -9.45     |             |                        |
| 3/31/2004      | -11.94          | -10.93    | -9.75     | -9.53     |             |                        |
| 9/26/2004      | -12.63          | -11.89    | -10.31    | -10.16    |             |                        |
| PM-3 Madrid    |                 |           |           |           | Reference P | oint Elevation: 70.68  |
| Depth of Well  | 640-680         | 480-520   | 240-280   | 145-185   |             |                        |
| Aquifer Name   | Lower San Pedro | Silverado | Lynwood   | Gage      |             |                        |
| 12/30/2003     | -16.74          | -13.18    | -13.11    | -13.08    |             |                        |
| 3/31/2004      | -16.64          | -13.19    | -13.13    | -13.03    |             |                        |
| 6/30/2004      | -16.58          | -13.39    | -13.34    | -13.27    |             |                        |
| 9/21/2004      | -16.81          | -13.66    | -13.52    | -13.45    |             | <u> </u>               |
|                | *               |           |           |           |             |                        |

#### TABLE 3.2 GROUNDWATER ELEVATIONS, WATER YEAR 2003-2004 Page 5 of 5

|                            | ZONE 1           | ZONE 2           | ZONE 3           | ZONE 4                                | ZONE 5         | ZONE 6                |
|----------------------------|------------------|------------------|------------------|---------------------------------------|----------------|-----------------------|
| PM-4 Mariner               | EONE I           | EOI LE           | ZOI\L 3          | ZOITE                                 |                | Point Elevation: 97.7 |
| Depth of Well              | 670-710          | 500-540          | 340-380          | 200-240                               |                |                       |
| Aquifer Name               | Lower San Pedro  | Silverado        | Lynwood          | Gage                                  |                |                       |
| 12/30/2003                 | -10.83           | -7.59            | -5.02            | -4.95                                 |                |                       |
| 3/31/2004                  | -10.62           | -7.23            | -4.74            | -4.69                                 |                |                       |
| 6/30/2004                  | -11.12           | -8.49            | -5.79            | -5.76                                 |                |                       |
| 9/26/2004                  | -10.25           | -9.27            | -6.65            | -6.57                                 |                |                       |
| Rio Hondo #1               |                  |                  |                  |                                       | Reference Po   | int Elevation: 144.36 |
| Depth of Well              | 1110-1130        | 910-930          | 710-730          | 430-450                               | 280-300        | 140-160               |
| Aquifer Name               | Sunnyside        | Sunnyside        | Sunnyside        | Silverado                             | Lynwood        | Gardena               |
| 12/26/2003                 | 63.8             | 62.93            | 62.29            | 54.33                                 | 61.69          | 65.48                 |
| 2/10/2004                  | 67.74            | 68.13            | 67.59            | 58.89                                 | 65.09          | 68.11                 |
| 3/30/2004                  | 75.1             | 75.42            | 74.72            | 68.36                                 | 75.93          | 78.77                 |
| 7/1/2004                   | 65.81            | 63.38            | 62.84            | 54.84                                 | 64.49          | 67.9                  |
| 9/22/2004                  | 58.31            | 52.44            | 51.64            | 44.12                                 | 55.55          | 59.59                 |
| South Gate #1              | 1440 1460        | 1220 1240        | 010.020          | 5(5.505                               |                | oint Elevation: 90.96 |
| Depth of Well              | 1440-1460        | 1320-1340        | 910-930          | 565-585                               | 220-240        |                       |
| Aquifer Name               | Sunnyside        | Sunnyside        | Sunnyside        | Lynwood/Silverado                     | Exposition     |                       |
| 1/5/2004<br>3/31/2004      | -6.52<br>-4.26   | -3.94<br>-3.77   | 0.75<br>-0.29    | 0.9<br>-2.93                          | 34.58<br>34.28 | -                     |
| 6/30/2004                  | -4.26<br>-9.03   | -3.//<br>-9.79   | -0.29<br>-6.5    | -2.93                                 | 34.28          | -                     |
| 9/14/2004                  | -9.03            | -9.79<br>-14.6   | -6.5<br>-9.6     | -6.3                                  | 32.21          |                       |
| 9/14/2004                  | -17.31           | -14.6            | -9.6<br>-9.47    | -14.36                                | 32.21          | <del> </del>          |
| Westchester #1             | -17.31           | -10.92           | -9.47            | -13.03                                |                | int Elevation: 124.27 |
| Depth of Well              | 740-760          | 560-580          | 455-475          | 310-330                               | 215-235        |                       |
| Aquifer Name               | Pico             | Lower San Pedro  | Silverado        | Lynwood                               | Gage           |                       |
| 10/7/2003                  | -3.75            | 6.52             | 6.9              | 7.13                                  | 7.26           |                       |
| 12/29/2003                 | -2.81            | 6.33             | 6.7              | 6.94                                  | 7.07           |                       |
| 3/30/2004                  | -2.37            | 6.51             | 6.9              | 7.07                                  | 7.2            |                       |
| 6/27/2004                  | -3.18            | 6.5              | 6.85             | 7.03                                  | 7.16           |                       |
| 9/15/2004                  | -4.01            | 6.35             | 6.66             | 6.84                                  | 6.96           |                       |
| Whittier #1                |                  |                  |                  | · · · · · · · · · · · · · · · · · · · | Reference Po   | int Elevation: 217.17 |
| Depth of Well              | 1180-1200        | 920-940          | 600-620          | 450-470                               | 200-220        |                       |
| Aquifer Name               | Pico             | Sunnyside        | Silverado        | Jefferson                             | Gage           |                       |
| 10/27/2003                 | 117.38           | 117.45           | 110.95           | 109.29                                | 197.89         |                       |
| 12/31/2003                 | 117.41           | 117.41           | 110.67           | 108.94                                | 197.62         |                       |
| 3/31/2004                  | 117.54           | 117.54           | 111.08           | 109.47                                | 198.14         |                       |
| 5/27/2004                  | 117.72           | 117.66           | 111.31           | 109.96                                | 197.92         |                       |
| 7/1/2004                   | 117.64           | 117.68           | 111.49           | 109.99                                | 197.71         |                       |
| 9/27/2004                  | 117.73           | 117.69           | 111.09           | 109.44                                | 197.23         | ļ                     |
| Willowbrook #1             |                  |                  |                  |                                       | Reference P    | oint Elevation: 96.21 |
| Depth of Well              | 885-905          | 500-520          | 360-380          | 200-220                               |                |                       |
| Aquifer Name               | Pico             | Silverado        | Lynwood          | Gage                                  |                |                       |
| 12/29/2003                 | -41.19<br>-36.14 | -31.79           | -25.71           | -25.45                                |                |                       |
| 3/30/2004                  |                  | -30.95<br>30.24  | -25.09<br>-26.79 | -24.94<br>26.25                       |                | -                     |
| 6/28/2004<br>9/21/2004     | -33.75<br>-53.26 | -30.24<br>-35.76 | -26.79           | -26.25<br>-29.32                      |                |                       |
| 9/21/2004<br>Wilmington #1 | -33.20           | -33.70           | -30              | -29.32                                | Reference D    | oint Elevation: 37.96 |
| Depth of Well              | 915-935          | 780-800          | 550-570          | 225-245                               | 120-140        | I Lievadoli. 57.90    |
| Aquifer Name               | Sunnyside        | Sunnyside        | Silverado        | Lynwood                               | Gage           | 1                     |
| 12/31/2003                 | -59.43           | -59.71           | -58.35           | -24.64                                | -21.1          | <del> </del>          |
| 3/29/2004                  | -57.8            | -58.01           | -58.11           | -25.11                                | -21.66         |                       |
| 4/8/2004                   | -55.85           | -56.02           | -56.18           | -24.6                                 | -21.27         |                       |
| 6/28/2004                  | -54.09           | -54.45           | -54.4            | -23.55                                | -20.32         | 1                     |
| 9/9/2004                   | -55.92           | -56.22           | -56.26           | -30.76                                | -22.54         | 1                     |
| 9/28/2004                  | -56              | -56.3            | -56.37           | -25.08                                | -21.73         |                       |
| Wilmington #2              |                  |                  |                  |                                       |                | oint Elevation: 29.78 |
| Depth of Well              | 950-970          | 755-775          | 540-560          | 390-410                               | 120-140        |                       |
| Aquifer Name               | Sunnyside        | Silverado        | Lynwood          | Lynwood                               | Gage           |                       |
| 12/31/2003                 | -43.99           | -38.57           | -33.01           | -31.88                                | -9.38          |                       |
| 3/16/2004                  | -44.18           | -39.14           | -34              | -33.11                                | -9.65          |                       |
| 3/29/2004                  | -43.04           | -37.78           | -32.86           | -31.92                                | -9.66          |                       |
| 6/28/2004                  | -40.32           | -35.6            | -30.86           | -30.13                                | -9.5           |                       |
| 9/8/2004                   | -41.95           | -37.04           | -32.79           | -32.14                                | -9.69          |                       |
| 9/28/2004                  | -41.83           | -37              | -32.33           | -31.59                                | -9.87          |                       |
|                            |                  |                  |                  |                                       |                | •                     |

#### TABLE 4.1 MAJOR MINERAL WATER QUALITY GROUPS

| GROUP A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GROUP B                                                                                                                                                                                                                                                                                                                                             | GROUP C                                                                                                               | OTHER                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Generally Calcium Bicarbonate or Calcium Bicarbonate/Sulfate Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Generally Calcium-Sodium-<br>Bicarbonate or Sodium-Bicarbonate<br>Dominant                                                                                                                                                                                                                                                                          | Generally Sodium-Chloride<br>Dominant                                                                                 | Generally Different Than Groups<br>A, B, and C                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CENTRAL                                                                                                                                                                                                                                                                                                                                             | BASIN                                                                                                                 |                                                                                                                                      |
| Cerritos #1 Zones 1, 2, 3, 4, 5, 6 Commerce #1 Zones 2,3,4,5,6 Downey #1 Zones 2, 3, 4, 5, 6 Huntington Park #1 Zones 1, 2, 3, 4 Lakewood #1 Zone 6 Long Beach #1 Zones 5,6 Long Beach #2 Zones 4,5,6 Rio Hondo #1 Zones 1, 2, 3, 4, 5, 6, Pico #1 Zones 2, 3, 4 Pico #2 Zones 1, 2, 3, 4, 5, 6 South Gate #1 Zones 1, 2, 3, 4, 5 Whittier #1 Zones 1, 2, 3, 4, 5 Willowbrook #1 Zones 2, 3, 4 Los Angeles #1 Zones 1, 2, 3, 4, 5 Montebello #1 Zones 3, 4, 5 Cerritos #2 Zones 1, 2, 3, 4, 5, 6 Compton #1 Zones 2,3,4,5 Norwalk #1 Zones 1,2,3 | Downey #1 Zone 1 Inglewood #2 Zones 1,3 Lakewood #1 Zones 1,2, 3, 4, 5 La Mirada #1 Zones 1, 2, 3, 4 Willowbrook #1 Zone 1 Long Beach #1 Zones 1,2,3,4 Long Beach #2 Zones 1,2,3 Santa Fe Springs #1 Zone 3 Long Beach #6 Zones 1,2,3,4,5,6 Montebello #1 Zone 2 Carson #2 Zones 1, 2, 3, 4, 5 Westchester #1 Zones 1, 2, 3, 4, 5 Compton #1 Zone 1 | Inglewood #2 Zone 2                                                                                                   | La Mirada #1 Zone 5<br>Pico #1 Zone 1<br>Santa Fe Springs #1 Zones 1,2,4                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WEST COAS                                                                                                                                                                                                                                                                                                                                           | T BASIN                                                                                                               |                                                                                                                                      |
| Carson #1 Zones 3, 4 Gardena #1 Zones 2, 3, 4 Hawthorne #1 Zones 5,6 Inglewood #1 Zones 3, 4, 5 PM-3 Madrid Zones 3,4                                                                                                                                                                                                                                                                                                                                                                                                                            | Carson #1 Zones 1, 2 Hawthorne #1 Zones 1,2,3,4 PM-3 Madrid Zone 2 Wilmington #2 Zone 3 Long Beach #3 Zones 1, 2, 3                                                                                                                                                                                                                                 | PM-4 Mariner Zones 2,3,4<br>Wilmington #1 Zones 1, 2, 3, 4, 5<br>Wilmington #2 Zones 4, 5<br>Long Beach #3 Zones 4, 5 | Gardena #1 Zone 1 Inglewood #1 Zone 1 Lomita #1 Zones 1, 2, 3, 4, 5, 6 PM-3 Madrid Zone 1 PM-4 Mariner Zone 1 Wilmington #2 Zone 1,2 |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 1 of 21

|                                                     |                | ı          |          |             |                |           |             |             |             |             |           |             |                |             |             |
|-----------------------------------------------------|----------------|------------|----------|-------------|----------------|-----------|-------------|-------------|-------------|-------------|-----------|-------------|----------------|-------------|-------------|
|                                                     |                |            | e        | Cerritos    | Cerritos       | Cerritos  | Cerritos    | Cerritos    | Cerritos    | Cerritos    | Cerritos  | Cerritos    | Cerritos       | Cerritos    | Cerritos    |
| Water Quality Constituents                          |                |            | Typ      | #1          | #1             | #1        | #1          | #1          | #1          | #1          | #1        | #1          | #1             | #1          | #1          |
|                                                     | Units          | MCL        | MCL Type | Zone 1      | Zone 1         | Zone 2    | Zone 2      | Zone 3      | Zone 3      | Zone 4      | Zone 4    | Zone 5      | Zone 5         | Zone 6      | Zone 6      |
|                                                     |                |            | -        | 4/26/2004   | 9/14/2004      | 4/26/2004 | 9/14/2004   | 4/26/2004   | 9/14/2004   | 4/26/2004   | 9/14/2004 | 4/26/2004   | 9/14/2004      | 4/26/2004   | 9/14/2004   |
| Total Dissolved Solid (TDS)                         | mg/l           | 1000       | S        | 280<br>4.75 | 280<br>4.74    | 270       | 290<br>4.42 | 320<br>5.46 | 330<br>5.44 | 270<br>4.85 | 290       | 270<br>4.52 | 290<br>4.56    | 280<br>4.61 | 280<br>4.65 |
| Cation Sum<br>Anion Sum                             | meq/l<br>meq/l |            |          | 4.73        | 4.74           | 4.48      | 4.42        | 5.46        | 5           | 4.83        | 4.72      | 4.32        | 4.36           | 4.46        | 4.63        |
| Iron, Total, ICAP                                   | mg/l           | 0.3        | s        | ND          | ND             | 0.017     | ND          | 0.025       | 0.024       | 0.08        | 0.072     | 0.059       | 0.058          | 0.064       | 0.062       |
| Manganese, Total, ICAP/MS                           | ug/l           | 50         | S        | 25          | 26             | 29        | 29          | 44          | 43          | 70          | 72        | 110         | 110            | 130         | 140         |
| Turbidity                                           | NTU            | 5          | s        | 0.15        | 0.1            | 0.4       | 0.3         | 0.1         | 0.1         | 0.25        | 0.2       | 0.2         | 0.25           | 0.25        | 0.15        |
| Alkalinity                                          | mg/l           |            |          | 160         | 152            | 152       | 147         | 170         | 161         | 176         | 166       | 176         | 163            | 184         | 183         |
| Boron                                               | mg/l           |            |          | 0.086       | 0.09           | 0.07      | 0.069       | 0.089       | 0.09        | 0.1         | 0.093     | 0.092       | 0.09           | 0.078       | 0.084       |
| Bicarbonate as HCO3,calculated Calcium, Total, ICAP | mg/l<br>mg/l   |            |          | 194<br>34   | 184<br>34      | 184<br>34 | 178<br>34   | 207<br>44   | 196<br>45   | 214<br>44   | 202<br>44 | 214<br>38   | 198<br>39      | 224<br>45   | 222<br>46   |
| Carbonate as CO3. Calculated                        | mg/l           |            |          | 3.17        | 3              | 2.39      | 2.31        | 2.13        | 2.02        | 1.75        | 1.65      | 1.75        | 2.04           | 1.83        | 2.29        |
| Hardness (Total, as CaCO3)                          | mg/l           |            |          | 104         | 104            | 108       | 107         | 135         | 137         | 155         | 151       | 134         | 137            | 151         | 154         |
| Chloride                                            | mg/l           | 250        | s        | 14          | 14             | 13        | 13          | 18          | 18          | 11          | 11        | 9.9         | 9.7            | 9.5         | 9.4         |
| Fluoride                                            | mg/l           | 2          | p        | 0.26        | 0.25           | 0.36      | 0.35        | 0.34        | 0.34        | 0.53        | 0.54      | 0.46        | 0.46           | 0.31        | 0.3         |
| Hydroxide as OH, Calculated                         | mg/l           |            |          | 0.04        | 0.04           | 0.03      | 0.03        | 0.03        | 0.03        | 0.02        | 0.02      | 0.02        | 0.03           | 0.02        | 0.03        |
| Langelier Index - 25 degree                         | None /         |            |          | 0.77<br>4.7 | 0.75           | 0.65      | 0.64        | 0.71        | 0.7         | 0.63        | 0.6       | 0.56        | 0.64           | 0.66<br>9.5 | 0.76        |
| Magnesium, Total, ICAP<br>Mercury                   | mg/l<br>ug/l   | 2          | р        | 4./<br>ND   | 4.6<br>ND      | 5.6<br>ND | 5.4<br>ND   | 6.2<br>ND   | 6<br>ND     | 11<br>ND    | 10<br>ND  | 9.6<br>ND   | 9.5<br>ND      | 9.5<br>ND   | 9.4<br>ND   |
| Nitrate-N by IC                                     | mg/l           | 10         | р        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Nitrite, Nitrogen by IC                             | mg/l           | 1          | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Potassium, Total, ICAP                              | mg/l           |            |          | 2.3         | 2.1            | 2.3       | 2.1         | 2           | 1.9         | 2           | 1.8       | 2           | 1.8            | 2.1         | 2           |
| Sodium, Total, ICAP                                 | mg/l           |            |          | 60          | 60             | 52        | 51          | 62          | 61          | 39          | 38        | 41          | 41             | 35          | 35          |
| Sulfate<br>Surfactants                              | mg/l           | 250<br>0.5 | S        | 51<br>ND    | 51<br>ND       | 41<br>ND  | 42<br>ND    | 61<br>ND    | 60<br>ND    | 35<br>ND    | 37<br>ND  | 29<br>ND    | 29<br>ND       | 24<br>ND    | 24<br>ND    |
| Total Nitrate, Nitrite-N, CALC                      | mg/l<br>mg/l   | 10         | s<br>p   | ND<br>ND    | ND<br>ND       | ND<br>ND  | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND       | ND<br>ND    | ND<br>ND    |
| Total Organic Carbon                                | mg/l           | 10         | Р        | 0.6         | ND             | 0.5       | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Carbon Dioxide                                      | mg/l           |            |          | 1.54        | 1.47           | 1.84      | 1.78        | 2.61        | 2.47        | 3.4         | 3.21      | 3.4         | 2.5            | 3.56        | 2.8         |
| General Physicals                                   |                |            |          |             |                |           |             |             |             |             |           | •           |                |             |             |
| Apparent Color                                      | ACU            | 15         | S        | 3           | 5              | 3         | 3           | 3           | 5           | 3           | 5         | 3           | 3              | 3           | 5           |
| Lab pH                                              | Units          | 2          |          | 8.4         | 8.4            | 8.3       | 8.3         | 8.2         | 8.2         | 8.1         | 8.1       | 8.1         | 8.2            | 8.1         | 8.2         |
| Odor<br>pH of CaCO3 saturation(25C)                 | TON<br>Units   | 3          | S        | 7.626       | <b>4</b> 7.649 | 7.649     | 7.663       | 7.486       | 7.5         | 7.471       | 7.496     | 7.535       | <b>8</b> 7.557 | 7.442       | 7.436       |
| pH of CaCO3 saturation(60C)                         | Units          |            |          | 7.020       | 7.047          | 7.047     | 7.003       | 7.460       | 7.1         | 7.471       | 7.1       | 7.1         | 7.1            | 7.442       | 7.430       |
| Specific Conductance                                | umho/cm        |            |          | 458         | 455            | 426       | 420         | 522         | 514         | 445         | 450       | 429         | 427            | 436         | 433         |
| Metals                                              |                |            |          |             |                |           |             |             |             |             |           |             |                |             |             |
| Aluminum, Total, ICAP/MS                            | ug/l           | 1000       | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Antimony, Total, ICAP/MS                            | ug/l           | 6          | p        | ND<br>14    | ND             | ND        | ND<br>12    | ND<br>19    | ND<br>20    | ND<br>5.6   | ND<br>5.2 | ND<br>9.6   | ND<br>10       | ND<br>36    | ND          |
| Arsenic, Total, ICAP/MS<br>Barium, Total, ICAP/MS   | ug/l<br>ug/l   | 50<br>1000 | p<br>p   | 43          | 15<br>44       | 11<br>92  | 91          | 110         | 110         | 5.6         | 5.2<br>59 | 68          | 75             | 89          | 35<br>96    |
| Beryllium, Total, ICAP/MS                           | ug/l           | 4          | р        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Chromium, Total, ICAP/MS                            | ug/l           | 50         | p        | 2.5         | ND             | 2.2       | ND          | 2.2         | ND          | 3.4         | ND        | 3.6         | ND             | 3.3         | ND          |
| Hexavalent Chromium (Cr VI)                         | mg/l           |            |          |             |                |           |             |             |             |             |           |             |                |             |             |
| Cadmium, Total, ICAP/MS                             | ug/l           | 5          | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Copper, Total, ICAP/MS                              | ug/l           | 1000       | S        | ND<br>ND    | ND<br>ND       | ND<br>ND  | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND          | ND<br>ND  | ND<br>ND    | ND             | ND          | ND<br>ND    |
| Lead, Total, ICAP/MS<br>Nickel, Total, ICAP/MS      | ug/l<br>ug/l   | 100        | р        | ND<br>ND    | ND<br>ND       | ND<br>ND  | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND       | ND<br>ND    | ND<br>ND    |
| Selenium, Total, ICAP/MS                            | ug/l           | 50         | р        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Silver, Total, ICAP/MS                              | ug/l           | 100        | S        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Thallium, Total, ICAP/MS                            | ug/l           | 2          | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Zinc, Total, ICAP/MS                                | ug/l           | 5000       | S        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Volatile Organic Compounds                          | /1             | l z        |          | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Trichloroethylene (TCE) Tetrachloroethylene (PCE)   | ug/l<br>ug/l   | 5          | p<br>p   | ND<br>ND    | ND             | ND<br>ND  | ND          | ND          | ND          | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND             | ND          | ND<br>ND    |
| 1,1-Dichloroethylene                                | ug/l           | 6          | р        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| cis-1,2-Dichloroethylene                            | ug/l           | 6          | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Carbon Tetrachloride                                | ug/l           | 0.5        | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| 1,1-Dichloroethane                                  | ug/l           | 100        | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| 1,2-Dichloroethane                                  | ug/l           | 0.5        | p        | ND<br>ND    | ND             | ND        | ND<br>ND    | ND          | ND<br>ND    | ND          | ND<br>ND  | ND<br>ND    | ND<br>ND       | ND          | ND<br>ND    |
| Fluorotrichloromethane-Freon11 Isopropylbenzene     | ug/l<br>ug/l   | 150        | p        | ND<br>ND    | ND<br>ND       | ND<br>ND  | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND       | ND<br>ND    | ND<br>ND    |
| n-Propylbenzene                                     | ug/l<br>ug/l   |            |          | ND<br>ND    | ND<br>ND       | ND        | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND       | ND          | ND<br>ND    |
| Dichlorodifluoromethane                             | ug/l           |            |          | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Benzene                                             | ug/l           | 1          | р        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| m,p-Xylenes                                         | ug/l           | 1750       | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Toluene                                             | ug/l           | 150        | p        | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| Ethyl benzene                                       | ug/l           | 700        | p        | ND<br>ND    | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| MTBE<br>Perchlorate                                 | ug/l<br>ug/l   | 13         | p<br>p   | ND          | ND             | ND        | ND          | ND          | ND          | ND          | ND        | ND          | ND             | ND          | ND          |
| 1 Cromorate                                         | ug/I           |            | P        |             |                |           |             |             |             | l .         |           |             |                |             |             |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 2 of 21

|                                                         |                  |      |          |                |                | 0              | C 2 01 1       |                |                |                |                |                |                |                |                |
|---------------------------------------------------------|------------------|------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Water Quality Constituents                              |                  |      | ype      | Cerritos<br>#2 |
| water Quanty Constituents                               | Units            | MCL  | MCL Type | Zone 1         | Zone 1         | Zone 2         | Zone 2         | Zone 3         | Zone 3         | Zone 4         | Zone 4         | Zone 5         | Zone 5         | Zone 6         | Zone 6         |
|                                                         |                  |      | -        | 5/13/2004      | 9/16/2004      | 5/13/2004      | 9/16/2004      | 5/13/2004      | 9/16/2004      | 5/13/2004      | 9/16/2004      | 5/13/2004      | 9/16/2004      | 5/13/2004      | 9/16/2004      |
| Total Dissolved Solid (TDS)                             | mg/l             | 1000 | S        | 210<br>3.84    | 230            | 500            | 500<br>8.19    | 220<br>3.97    | 240<br>4.24    | 240            | 220            | 230<br>4.42    | 250<br>4.33    | 860<br>14.7    | 870            |
| Cation Sum<br>Anion Sum                                 | meq/l<br>meq/l   |      |          | 3.54           | 3.72<br>3.44   | 8.41<br>8.06   | 7.96           | 3.61           | 3.96           | 4.45           | 3.76<br>3.44   | 4.42           | 3.91           | 14.7           | 14.6<br>14     |
| Iron, Total, ICAP                                       | mg/l             | 0.3  | s        | 0.017          | ND             | ND             | ND             | 0.034          | 0.098          | 0.059          | 0.031          | 0.11           | 0.05           | 0.25           | 0.24           |
| Manganese, Total, ICAP/MS                               | ug/l             | 50   | S        | 26             | 24             | ND             | ND             | 57             | 100            | 79             | 51             | 110            | 77             | 480            | 440            |
| Turbidity                                               | NTU              | 5    | s        | 0.1            | 0.2            | 0.4            | 0.3            | 6              | 0.15           | 0.7            | 9.3            | 0.3            | 0.7            | 1.6            | 1.4            |
| Alkalinity                                              | mg/l             |      |          | 150            | 143            | 171            | 161            | 157            | 172            | 178            | 147            | 178            | 168            | 335            | 316            |
| Boron                                                   | mg/l             |      |          | 0.055          | 0.059          | 0.11           | 0.11           | 0.074          | 0.082          | 0.097          | 0.063          | 0.093          | 0.08           | 0.11           | 0.11           |
| Bicarbonate as HCO3,calculated                          | mg/l             |      |          | 182            | 174            | 208            | 196            | 191            | 209            | 216            | 178            | 216            | 204            | 408            | 385            |
| Calcium, Total, ICAP                                    | mg/l             |      |          | 43             | 43             | 99             | 99             | 45             | 52             | 53             | 44             | 54             | 52             | 180            | 180            |
| Carbonate as CO3, Calculated Hardness (Total, as CaCO3) | mg/l<br>mg/l     |      |          | 1.87           | 1.42           | 1.7<br>328     | 1.01<br>321    | 1.97<br>138    | 2.71<br>160    | 2.22           | 2.31           | 2.22<br>167    | 2.65<br>165    | 2.11<br>602    | 1.25<br>602    |
| Chloride                                                | mg/l             | 250  | S        | 5.2            | 5.9            | 67.4           | 71             | 4.9            | 6              | 5.5            | 5.5            | 5.3            | 6.3            | 110            | 110            |
| Fluoride                                                | mg/l             | 2    | p        | 0.28           | 0.28           | 0.36           | 0.36           | 0.29           | 0.33           | 0.4            | 0.29           | 0.33           | 0.41           | 0.33           | 0.35           |
| Hydroxide as OH, Calculated                             | mg/l             | _    | r        | 0.03           | 0.02           | 0.02           | 0.01           | 0.03           | 0.03           | 0.03           | 0.03           | 0.03           | 0.03           | 0.01           | 0.009          |
| Langelier Index - 25 degree                             | None             |      |          | 0.66           | 0.53           | 0.97           | 0.74           | 0.69           | 0.89           | 0.81           | 0.75           | 0.82           | 0.88           | 1.3            | 1.1            |
| Magnesium, Total, ICAP                                  | mg/l             |      |          | 5.7            | 5.5            | 19             | 18             | 6.3            | 7.4            | 8.8            | 6              | 7.8            | 8.5            | 37             | 37             |
| Mercury                                                 | ug/l             | 2    | p        | ND             |
| Nitrate-N by IC                                         | mg/l             | 10   | p        | ND             | ND             | 3.1            | 3              | ND             |
| Nitrite, Nitrogen by IC                                 | mg/l             | 1    | p        | ND             | ND             | ND             | ND             | ND             | ND<br>2.0      | ND<br>2.8      | ND             | ND<br>2.0      | ND             | ND             | ND<br>4.5      |
| Potassium, Total, ICAP<br>Sodium, Total, ICAP           | mg/l             |      |          | 2.7            | 2.7            | 4.1            | 4.1            | 2.6            | 2.8            | 2.8            | 2.5            | 2.9            | 2.7            | 4.4<br>58      | 4.5<br>56      |
| Sulfate                                                 | mg/l<br>mg/l     | 250  | c        | 18.3           | 19             | 120            | 120            | 15             | 16             | 16             | 16             | 15             | 17             | 210            | 220            |
| Surfactants                                             | mg/l             | 0.5  | S        | ND             |
| Total Nitrate, Nitrite-N, CALC                          | mg/l             | 10   | р        | ND             | ND             | 3.1            | 3              | ND             |
| Total Organic Carbon                                    | mg/l             |      | Г        | ND             | 1.4            | 1.3            |
| Carbon Dioxide                                          | mg/l             |      |          | 2.3            | 2.76           | 3.3            | 4.93           | 2.41           | 2.09           | 2.73           | 1.78           | 2.73           | 2.04           | 10.3           | 15.4           |
| General Physicals                                       |                  |      |          |                | •              | •              | •              | •              | •              | •              | •              |                |                | •              |                |
| Apparent Color                                          | ACU              | 15   | s        | 3              | 3              | ND             | 3              | 3              | 3              | 3              | 5              | 3              | 3              | 3              | 5              |
| Lab pH                                                  | Units            |      |          | 8.2            | 8.1            | 8.1            | 7.9            | 8.2            | 8.3            | 8.2            | 8.3            | 8.2            | 8.3            | 7.9            | 7.7            |
| Odor                                                    | TON              | 3    | S        | 4              | 1              | 3              | 1              | 4              | 2              | 8              | 1              | 8              | 2              | 3              | 1              |
| pH of CaCO3 saturation(25C)                             | Units            |      |          | 7.541          | 7.571          | 7.127          | 7.157          | 7.511          | 7.409          | 7.386          | 7.551          | 7.378          | 7.419          | 6.579          | 6.604          |
| pH of CaCO3 saturation(60C) Specific Conductance        | Units<br>umho/cm |      |          | 7.1<br>341     | 7.1            | 6.7<br>783     | 6.7<br>771     | 7.1            | 397            | 6.9<br>376     | 7.1<br>351     | 6.9<br>375     | 402            | 6.1<br>1200    | 6.2<br>1320    |
| Metals                                                  | unnovem          | l    |          | 311            | 331            | 703            | ,,,,           | 330            | 371            | 370            | 331            | 373            | 102            | 1200           | 1320           |
| Aluminum, Total, ICAP/MS                                | ug/l             | 1000 | р        | ND             |
| Antimony, Total, ICAP/MS                                | ug/l             | 6    | p        | ND             |
| Arsenic, Total, ICAP/MS                                 | ug/l             | 50   | p        | 2.5            | 2.5            | 2              | 2.2            | 4              | 18             | 11             | 3.8            | 17             | 9.9            | 4.1            | 3.3            |
| Barium, Total, ICAP/MS                                  | ug/l             | 1000 | p        | 90             | 96             | 160            | 170            | 96             | 160            | 140            | 100            | 150            | 150            | 110            | 100            |
| Beryllium, Total, ICAP/MS                               | ug/l             | 4    | p        | ND             |
| Chromium, Total, ICAP/MS                                | ug/l             | 50   | p        | 2.8            | 4.2            | 3.9            | 6.8            | 3.1            | 5.2            | 3.1            | 4.8            | 2.7            | 5.5            | 6.4            | 10             |
| Hexavalent Chromium (Cr VI) Cadmium, Total, ICAP/MS     | mg/l<br>ug/l     | 5    | р        | ND             |
| Copper, Total, ICAP/MS                                  | ug/l             | 1000 | s        | ND             |
| Lead, Total, ICAP/MS                                    | ug/l             | 15   |          | ND             |
| Nickel, Total, ICAP/MS                                  | ug/l             | 100  | р        | ND             | 7.9            |
| Selenium, Total, ICAP/MS                                | ug/l             | 50   | p        | ND             |
| Silver, Total, ICAP/MS                                  | ug/l             | 100  | s        | ND             |
| Thallium, Total, ICAP/MS                                | ug/l             | 2    | p        | ND             |
| Zinc, Total, ICAP/MS                                    | ug/l             | 5000 | S        | ND             |
| Volatile Organic Compounds Trichloroethylene (TCE)      | na/L             | 5    | r        | NID            | ND             | NID            | NID            | NID            | NID            | ND             | ND             | NID            | NID            | NID            | NID            |
| Tetrachloroethylene (PCE)                               | ug/l<br>ug/l     | 5    | p<br>p   | ND<br>ND       | ND<br>ND       | ND<br>0.6      | ND<br>ND       |
| 1,1-Dichloroethylene                                    | ug/l             | 6    | p        | ND             | ND<br>ND       |
| cis-1,2-Dichloroethylene                                | ug/l             | 6    | р        | ND             |
| Carbon Tetrachloride                                    | ug/l             | 0.5  | р        | ND             |
| 1,1-Dichloroethane                                      | ug/l             | 100  | p        | ND             |
| 1,2-Dichloroethane                                      | ug/l             | 0.5  | p        | ND             |
| Fluorotrichloromethane-Freon11                          | ug/l             | 150  | p        | ND             |
| Isopropylbenzene                                        | ug/l             |      |          | ND             |
| n-Propylbenzene                                         | ug/l             |      |          | ND             |
| Dichlorodifluoromethane                                 | ug/l             | 1    |          | ND             | ND<br>ND       |
| Benzene<br>m,p-Xylenes                                  | ug/l<br>ug/l     | 1750 | p        | ND<br>ND       |
| Toluene                                                 | ug/l<br>ug/l     | 1/50 | p<br>p   | ND<br>ND       |
| Ethyl benzene                                           | ug/l             | 700  | р        | ND             |
| MTBE                                                    | ug/l             | 13   | р        | ND             |
| Perchlorate                                             | ug/l             | 6    | р        |                |                |                |                |                |                |                |                |                |                |                |                |
|                                                         |                  |      | 1        |                |                |                |                | -              |                |                |                |                |                |                |                |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 3 of 21

| Water Quality Constituents                              |              |      | MCL Type | Commerce #1      | Commerce<br>#1 | Commerce<br>#1 | Commerce<br>#1     | Commerce<br>#1     | Commerce<br>#1     | Commerce<br>#1 | Commerce<br>#1 | Commerce<br>#1 | Commerce<br>#1 |
|---------------------------------------------------------|--------------|------|----------|------------------|----------------|----------------|--------------------|--------------------|--------------------|----------------|----------------|----------------|----------------|
| Water Quanty Constituents                               | Units        | 75   | CL 1     | Zone 2           | Zone 2         | Zone 3         | Zone 3             | Zone 4             | Zone 4             | Zone 5         | Zone 5         | Zone 6         | Zone 6         |
|                                                         | Un           | МСГ  | MC       | 5/17/2004        | 9/27/2004      | 5/17/2004      | 9/27/2004          | 5/17/2004          | 9/27/2004          | 5/17/2004      | 9/27/2004      | 5/17/2004      | 9/27/2004      |
| Total Dissolved Solid (TDS)                             | mg/l         | 1000 | s        | 660              | 690            | 480            | 490                | 490                | 500                | 490            | 510            | 390            | 390            |
| Cation Sum                                              | meq/l        |      | Ш        | 12.6             | 11.7           | 8.39           | 8.52               | 7.99               | 8.89               | 8.62           | 6.66           | 6.79           | 8.46           |
| Anion Sum                                               | meq/l        |      |          | 12.2             | 12.1           | 8.27           | 8.12               | 8.51               | 8.07               | 9.84           | 8.2            | 6.34           | 6.28           |
| Iron, Total, ICAP                                       | mg/l         | 0.3  | S        | 0.042            | 0.036          | 0.094          | 0.094<br><b>67</b> | 0.068<br><b>68</b> | 0.075<br><b>72</b> | 0.099          | ND<br>ND       | ND<br>ND       | ND<br>ND       |
| Manganese, Total, ICAP/MS Turbidity                     | ug/l<br>NTU  | 5    | S        | 18<br><b>5.3</b> | 1.4            | 0.4            | 0.45               | 0.3                | 0.25               | ND<br>0.75     | 0.4            | 2.5            | 1.1            |
| Alkalinity                                              | mg/l         | 3    | 3        | 298              | 292            | 210            | 204                | 200                | 193                | 283            | 178            | 169            | 162            |
| Boron                                                   | mg/l         |      |          | 0.52             | 0.52           | 0.23           | 0.25               | 0.24               | 0.26               | 0.24           | 0.14           | 0.15           | 0.17           |
| Bicarbonate as HCO3,calculated                          | mg/l         |      |          | 363              | 356            | 255            | 248                | 243                | 235                | 345            | 217            | 206            | 197            |
| Calcium, Total, ICAP                                    | mg/l         |      | П        | 62               | 58             | 62             | 62                 | 46                 | 49                 | 63             | 60             | 61             | 78             |
| Carbonate as CO3, Calculated                            | mg/l         |      |          | 1.87             | 1.84           | 2.09           | 2.55               | 1.99               | 0.964              | 1.78           | 0.561          | 1.06           | 0.51           |
| Hardness (Total, as CaCO3)                              | mg/l         |      |          | 274              | 252            | 241            | 241                | 189                | 201                | 244            | 228            | 231            | 294            |
| Chloride                                                | mg/l         | 250  | s        | 220              | 220            | 100            | 99                 | 120                | 110                | 71             | 83             | 58             | 60             |
| Fluoride                                                | mg/l         | 2    | p        | 0.35             | 0.36           | 0.36           | 0.35               | 0.44               | 0.45               | 0.41           | 0.4            | 0.46           | 0.48           |
| Hydroxide as OH, Calculated                             | mg/l         |      |          | 0.01             | 0.01           | 0.02           | 0.03               | 0.02               | 0.01               | 0.01           | 0.007          | 0.01           | 0.007          |
| Langelier Index - 25 degree                             | None         |      |          | 0.81             | 0.77           | 0.71           | 0.94               | 0.7                | 0.42               | 0.79           | 0.27           | 0.55           | 0.34           |
| Magnesium, Total, ICAP Mercury                          | mg/l<br>ug/l | 2    | r        | 29<br>ND         | 26<br>ND       | 21<br>ND       | 21<br>ND           | 18<br>ND           | 19<br>ND           | 21<br>ND       | 19<br>ND       | 19<br>ND       | 24<br>ND       |
| Nitrate-N by IC                                         | mg/l         | 10   | p<br>p   | ND               | ND             | ND<br>ND       | ND<br>ND           | ND                 | ND<br>ND           | 3.9            | 4.2            | 6.2            | 6.3            |
| Nitrite, Nitrogen by IC                                 | mg/l         | 10   | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Potassium, Total, ICAP                                  | mg/l         | Ė    | P        | 6.3              | 6.1            | 3.3            | 3.4                | 3.2                | 3.5                | 3.5            | 1.9            | 1.9            | 2.5            |
| Sodium, Total, ICAP                                     | mg/l         |      |          | 160              | 150            | 80             | 83                 | 95                 | 110                | 84             | 47             | 49             | 58             |
| Sulfate                                                 | mg/l         | 250  | s        | ND               | ND             | 59             | 59                 | 53                 | 52                 | 90             | 95             | 41             | 42             |
| Surfactants                                             | mg/l         | 0.5  | s        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Total Nitrate, Nitrite-N, CALC                          | mg/l         | 10   | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | 3.9            | 4.2            | 6.2            | 6.3            |
| Total Organic Carbon                                    | mg/l         |      |          | 3.1              | 3.2            | 0.9            | 0.9                | 0.7                | 0.7                | ND             | ND             | ND             | ND             |
| Carbon Dioxide                                          | mg/l         |      |          | 9.14             | 8.96           | 4.05           | 3.13               | 3.86               | 7.45               | 8.69           | 10.9           | 5.19           | 9.9            |
| General Physicals                                       | A CIT        | 1.5  |          | 17               | 1.7            | -              | 2                  | 2                  | -                  | ND             | ND             | ND             | ND             |
| Apparent Color                                          | ACU<br>Units | 15   | S        | 15<br>7.9        | 7.9            | 5<br>8.1       | 3<br>8.2           | 8.1                | 5<br>7.8           | ND<br>7.9      | 7.6            | ND<br>7.9      | ND<br>7.6      |
| Lab pH<br>Odor                                          | TON          | 3    | s        | 17               | 4              | 8.1            | 4                  | 1                  | 1.8                | 3              | 3              | 1.9            | 1.0            |
| pH of CaCO3 saturation(25C)                             | Units        |      | 3        | 7.093            | 7.13           | 7.385          | 7.258              | 7.397              | 7.384              | 7.108          | 7.33           | 7.346          | 7.258          |
| pH of CaCO3 saturation(60C)                             | Units        |      |          | 6.6              | 6.7            | 6.9            | 6.8                | 7                  | 6.9                | 6.7            | 6.9            | 6.9            | 6.8            |
| Specific Conductance                                    | umho/cm      |      | П        | 1180             | 1210           | 812            | 837                | 848                | 751                | 763            | 717            | 632            | 640            |
| Metals                                                  |              |      |          |                  |                |                |                    |                    |                    | •              |                |                |                |
| Aluminum, Total, ICAP/MS                                | ug/l         | 1000 | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Antimony, Total, ICAP/MS                                | ug/l         | 6    | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Arsenic, Total, ICAP/MS                                 | ug/l         | 50   | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Barium, Total, ICAP/MS                                  | ug/l         | 1000 | p        | 75               | 77             | 73             | 78                 | 220                | 220                | 80<br>ND       | 53             | 52             | 82<br>ND       |
| Beryllium, Total, ICAP/MS                               | ug/l         | 50   | p        | ND<br>ND         | ND<br>ND       | ND<br>2.6      | ND<br>ND           | ND<br>2.3          | ND<br>ND           | ND<br>8        | ND<br>9.8      | ND<br>11       | ND<br>5.9      |
| Chromium, Total, ICAP/MS<br>Hexavalent Chromium (Cr VI) | ug/l<br>mg/l | 30   | p        | ND               | ND             | 2.0            | ND                 | 2.3                | ND                 | 0              | 9.8            | 11             | 3.9            |
| Cadmium, Total, ICAP/MS                                 | ug/l         | 5    | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Copper, Total, ICAP/MS                                  | ug/l         | 1000 | S        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Lead, Total, ICAP/MS                                    | ug/l         | 15   |          | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Nickel, Total, ICAP/MS                                  | ug/l         | 100  | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Selenium, Total, ICAP/MS                                | ug/l         | 50   | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Silver, Total, ICAP/MS                                  | ug/l         | 100  | s        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Thallium, Total, ICAP/MS                                | ug/l         | 2    | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Zinc, Total, ICAP/MS                                    | ug/l         | 5000 | S        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Volatile Organic Compounds Trichloroethylene (TCE)      | . /1         | -    |          | ND               | ND             | ND             | ND                 | ND                 | ND                 | 0.7            | 0.0            | ND             | ND             |
| Tetrachloroethylene (PCE)                               | ug/l<br>ug/l | 5    | p        | ND<br>ND         | ND<br>ND       | ND<br>ND       | ND<br>ND           | ND<br>ND           | ND<br>ND           | 0.7<br>1.2     | 0.8<br>1.7     | ND<br>ND       | ND<br>ND       |
| 1,1-Dichloroethylene                                    | ug/l         | 6    | p<br>p   | ND               | ND             | ND<br>ND       | ND<br>ND           | ND                 | ND<br>ND           | ND             | ND             | ND<br>ND       | ND             |
| cis-1,2-Dichloroethylene                                | ug/l         | 6    | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Carbon Tetrachloride                                    | ug/l         | 0.5  | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| 1,1-Dichloroethane                                      | ug/l         | 100  | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| 1,2-Dichloroethane                                      | ug/l         | 0.5  | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Fluorotrichloromethane-Freon11                          | ug/l         | 150  | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Isopropylbenzene                                        | ug/l         |      |          | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| n-Propylbenzene                                         | ug/l         |      | $\Box$   | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Dichlorodifluoromethane                                 | ug/l         |      |          | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Benzene                                                 | ug/l         | 1    | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| m,p-Xylenes                                             | ug/l         | 1750 | р        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Toluene                                                 | ug/l         | 150  | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Ethyl benzene                                           | ug/l         | 700  | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| MTBE<br>Perchlorate                                     | ug/l         | 13   | p        | ND               | ND             | ND             | ND                 | ND                 | ND                 | ND             | ND             | ND             | ND             |
| Perchlorate                                             | ug/l         | 6    | p        |                  |                |                |                    |                    |                    |                |                |                |                |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 4 of 21**

|                                                            |                |             |          |                  | -                | age + c       |               |               |               |               |               |               |               |
|------------------------------------------------------------|----------------|-------------|----------|------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Water Quality Constituents                                 |                |             | MCL Type | Compton<br>#1    | Compton<br>#1    | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 | Compton<br>#1 |
| water quanty constituents                                  | its            | 1           |          | Zone 1           | Zone 1           | Zone 2        | Zone 2        | Zone 3        | Zone 3        | Zone 4        | Zone 4        | Zone 5        | Zone 5        |
|                                                            | Units          | MCL         | -        | 5/19/2004        | 9/23/2004        | 5/19/2004     | 9/23/2004     | 5/19/2004     | 9/23/2004     | 5/19/2004     | 9/23/2004     | 5/19/2004     | 9/23/2004     |
| Total Dissolved Solid (TDS)                                | mg/l           | 1000        | S        | 230              | 220              | 290           | 290           | 320           | 310           | 330           | 340           | 340           | 340           |
| Cation Sum<br>Anion Sum                                    | meq/l<br>meq/l |             |          | 3.92             | 3.87             | 5.02<br>4.77  | 5.07<br>4.57  | 5.36          | 5.24<br>4.94  | 5.81          | 5.65<br>5.34  | 5.88<br>5.44  | 5.79<br>4.42  |
| Iron, Total, ICAP                                          | mg/l           | 0.3         | s        | 0.011            | ND               | 0.022         | 0.021         | 0.04          | 0.05          | 0.14          | 0.15          | 0.074         | 0.09          |
| Manganese, Total, ICAP/MS                                  | ug/l           | 50          | S        | 11               | 12               | 32            | 29            | 68            | 69            | 100           | 120           | 79            | 93            |
| Turbidity                                                  | NTU            | 5           | s        | 0.3              | 0.5              | 1.3           | 0.15          | 4.2           | 2.8           | 1.2           | 1.1           | 0.2           | 2.6           |
| Alkalinity                                                 | mg/l           |             |          | 162              | 157              | 142           | 139           | 159           | 155           | 165           | 161           | 179           | 173           |
| Boron                                                      | mg/l           |             |          | 0.15<br>196      | 0.16<br>190      | 0.1<br>172    | 0.12<br>169   | 0.12<br>193   | 0.12<br>188   | 0.099<br>200  | 0.099<br>196  | 0.13<br>218   | 0.15<br>211   |
| Bicarbonate as HCO3,calculated Calcium, Total, ICAP        | mg/l<br>mg/l   |             |          | 196              | 190              | 42            | 43            | 48            | 48            | 61            | 60            | 58            | 57            |
| Carbonate as CO3, Calculated                               | mg/l           |             |          | 4.03             | 3.9              | 2.81          | 1.1           | 1.99          | 1.94          | 2.06          | 1.6           | 1.42          | 1.09          |
| Hardness (Total, as CaCO3)                                 | mg/l           |             |          | 54.4             | 54.4             | 120           | 123           | 157           | 156           | 180           | 177           | 190           | 188           |
| Chloride                                                   | mg/l           | 250         | s        | 14               | 14               | 22            | 20            | 22            | 22            | 20            | 20            | 18            | 9.1           |
| Fluoride                                                   | mg/l           | 2           | p        | 0.33             | 0.29             | 0.33          | 0.3           | 0.28          | 0.24          | 0.27          | 0.24          | 0.35          | 0.33          |
| Hydroxide as OH, Calculated<br>Langelier Index - 25 degree | mg/l<br>None   |             |          | 0.05             | 0.05             | 0.04          | 0.02          | 0.03<br>0.72  | 0.03          | 0.03          | 0.02          | 0.02          | 0.01          |
| Magnesium, Total, ICAP                                     | mg/l           |             |          | 1.7              | 1.7              | 3.7           | 3.7           | 9.1           | 8.8           | 6.7           | 6.5           | 11            | 11            |
| Mercury                                                    | ug/l           | 2           | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Nitrate-N by IC                                            | mg/l           | 10          | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Nitrite, Nitrogen by IC                                    | mg/l           | 1           | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Potassium, Total, ICAP                                     | mg/l           |             |          | 1.7              | 1.6              | 1.8           | 1.9           | 3             | 2.9           | 2.9           | 2.8           | 2.9           | 3             |
| Sodium, Total, ICAP<br>Sulfate                             | mg/l           | 250         |          | 64               | 63<br>2.2        | 59<br>62      | 59<br>58      | 49<br>57      | 47<br>58      | 49<br>73      | 47<br>74      | 46<br>64      | 45<br>33      |
| Surfactants                                                | mg/l<br>mg/l   | 0.5         | S        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Total Nitrate, Nitrite-N, CALC                             | mg/l           | 10          | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Total Organic Carbon                                       | mg/l           |             |          | 3.1              | 2.9              | 0.8           | 0.7           | 0.9           | 0.8           | ND            | ND            | ND            | ND            |
| Carbon Dioxide                                             | mg/l           |             |          | 1.24             | 1.2              | 1.37          | 3.38          | 2.44          | 2.37          | 2.52          | 3.11          | 4.36          | 5.31          |
| General Physicals                                          |                |             |          |                  |                  |               | -             | ā             |               |               |               |               |               |
| Apparent Color<br>Lab pH                                   | ACU<br>Units   | 15          | S        | <b>30</b><br>8.5 | <b>30</b><br>8.5 | 5<br>8.4      | 5<br>8        | 3<br>8.2      | 8.2           | 8.2           | 8.1           | 8             | 7.9           |
| Odor                                                       | TON            | 3           | s        | 3                | 4                | 4             | 4             | 4             | 4             | 4             | 4             | 4             | 4             |
| pH of CaCO3 saturation(25C)                                | Units          |             | Ť        | 7.874            | 7.887            | 7.586         | 7.584         | 7.478         | 7.49          | 7.359         | 7.375         | 7.343         | 7.365         |
| pH of CaCO3 saturation(60C)                                | Units          |             |          | 7.4              | 7.4              | 7.1           | 7.1           | 7             | 7             | 6.9           | 6.9           | 6.9           | 6.9           |
| Specific Conductance                                       | umho/cm        |             |          | 360              | 358              | 478           | 475           | 510           | 500           | 541           | 536           | 544           | 535           |
| Metals                                                     | /1             | 1000        |          | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND.           | NID.          |
| Aluminum, Total, ICAP/MS<br>Antimony, Total, ICAP/MS       | ug/l<br>ug/l   | 1000        | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Arsenic, Total, ICAP/MS                                    | ug/l           | 50          | р        | ND               | ND               | ND            | ND            | 1.2           | 1.1           | 38            | 40            | 30            | 32            |
| Barium, Total, ICAP/MS                                     | ug/l           | 1000        | p        | 5.3              | 5.8              | 13            | 14            | 56            | 58            | 160           | 160           | 90            | 92            |
| Beryllium, Total, ICAP/MS                                  | ug/l           | 4           | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Chromium, Total, ICAP/MS                                   | ug/l           | 50          | p        | ND               | 2.9              | ND            | 2.7           | ND            | 2.5           | ND            | 3.1           | ND            | 2.4           |
| Hexavalent Chromium (Cr VI)                                | mg/l           | -           |          | ND               | ND               | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND            | ND            | ND<br>ND      | ND            | ND<br>ND      |
| Cadmium, Total, ICAP/MS<br>Copper, Total, ICAP/MS          | ug/l<br>ug/l   | 1000        | p<br>s   | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Lead, Total, ICAP/MS                                       | ug/l           | 15          | 3        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Nickel, Total, ICAP/MS                                     | ug/l           | 100         | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Selenium, Total, ICAP/MS                                   | ug/l           | 50          | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Silver, Total, ICAP/MS                                     | ug/l           | 100         | S        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Thallium, Total, ICAP/MS<br>Zinc, Total, ICAP/MS           | ug/l<br>ug/l   | 5000        | p        | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>12      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Volatile Organic Compounds                                 | ug/I           | 3000        | S        | ND               | ND               | ND            | 12            | ND            | ND            | ND            | ND            | מא            | ND            |
| Trichloroethylene (TCE)                                    | ug/l           | 5           | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Tetrachloroethylene (PCE)                                  | ug/l           | 5           | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethylene                                       | ug/l           | 6           | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| cis-1,2-Dichloroethylene                                   | ug/l           | 6           | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Carbon Tetrachloride 1,1-Dichloroethane                    | ug/l           | 0.5         | p        | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| 1,2-Dichloroethane                                         | ug/l<br>ug/l   | 0.5         | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Fluorotrichloromethane-Freon11                             | ug/l           | 150         | р        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Isopropylbenzene                                           | ug/l           |             | Ĺ        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| n-Propylbenzene                                            | ug/l           |             |          | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Dichlorodifluoromethane                                    | ug/l           |             |          | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Benzene                                                    | ug/l           | 1750        | p        | ND               | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| m,p-Xylenes                                                | ug/l           | 1750<br>150 | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Toluene                                                    |                |             |          | עוו              | עאַנו            | 1417          | שויו          | עויו          | עזי           | עזי           | I IVD         | שיי           | ND            |
| Toluene<br>Ethyl benzene                                   | ug/l<br>ug/l   | _           | _        |                  | ND               | ND            | ND            | ND            | ND            | ND            | ND            | ND            | ND            |
| Toluene<br>Ethyl benzene<br>MTBE                           | ug/l<br>ug/l   | 700         | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 5 of 21

| Water Quality Constituents                          |                      |             | Type   | Downey<br>#1 |
|-----------------------------------------------------|----------------------|-------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| , <b>Ç</b> ,                                        | Units                | MCL         | MCL 1  | Zone 1       | Zone 1       | Zone 2       | Zone 2       | Zone 3       | Zone 3       | Zone 4       | Zone 4       | Zone 5       | Zone 5       | Zone 6       | Zone 6       |
| T . 1D' 1 10 1'1 (TDC)                              |                      |             | -      | 5/25/2004    | 9/22/2004    | 5/25/2004    | 9/22/2004    | 5/25/2004    | 9/22/2004    | 5/25/2004    | 9/22/2004    | 5/25/2004    | 9/22/2004    | 5/25/2004    | 9/22/2004    |
| Total Dissolved Solid (TDS) Cation Sum              | mg/l<br>meq/l        | 1000        | S      | 220<br>3.67  | 210<br>3.69  | 390<br>6.15  | 6.33         | 510<br>7.87  | 500<br>7.96  | 560<br>8.9   | 570<br>9.19  | 420<br>6.92  | 410<br>6.93  | 910<br>15    | 940          |
| Anion Sum                                           | meq/l                |             |        | 3.39         | 3.4          | 5.78         | 5.91         | 7.59         | 7.6          | 8.76         | 8.52         | 6.4          | 6.51         | 12           | 14.5         |
| Iron, Total, ICAP                                   | mg/l                 | 0.3         | s      | ND           | 0.013        | ND           |
| Manganese, Total, ICAP/MS                           | ug/l                 | 50          | s      | ND           | 3.1          | 140          | 110          | 86           | 75           |
| Turbidity                                           | NTU                  | 5           | s      | 0.2          | 0.15         | 0.85         | 0.45         | 0.4          | 0.4          | 0.25         | 0.45         | 3.6          | 4.6          | 3.2          | 0.8          |
| Alkalinity                                          | mg/l                 |             |        | 145          | 145          | 148          | 155          | 151          | 158          | 177          | 183          | 191          | 201          | 273          | 304          |
| Boron                                               | mg/l                 |             |        | ND           | 0.064        | 0.056        | 0.065        | 0.071        | 0.087        | 0.19         | 0.22         | 0.078        | 0.087        | 0.23         | 0.24         |
| Bicarbonate as HCO3,calculated Calcium, Total, ICAP | mg/l                 |             |        | 176<br>40    | 176<br>41    | 180<br>78    | 189<br>80    | 184<br>100   | 192<br>100   | 216<br>95    | 223<br>99    | 233<br>86    | 245<br>87    | 333<br>170   | 371<br>170   |
| Carbonate as CO3, Calculated                        | mg/l<br>mg/l         |             |        | 1.81         | 1.14         | 1.47         | 0.976        | 0.95         | 0.787        | 0.886        | 0.577        | 1.2          | 0.798        | 0.684        | 0.606        |
| Hardness (Total, as CaCO3)                          | mg/l                 |             |        | 123          | 126          | 244          | 253          | 324          | 328          | 315          | 330          | 285          | 287          | 565          | 569          |
| Chloride                                            | mg/l                 | 250         | S      | 4.8          | 4.7          | 31           | 31           | 65           | 61           | 75           | 70           | 34           | 33           | 77           | 100          |
| Fluoride                                            | mg/l                 | 2           | р      | 0.31         | 0.3          | 0.28         | 0.27         | 0.33         | 0.32         | 0.39         | 0.39         | 0.36         | 0.36         | 0.29         | 0.28         |
| Hydroxide as OH, Calculated                         | mg/l                 |             |        | 0.03         | 0.02         | 0.02         | 0.01         | 0.01         | 0.01         | 0.01         | 0.007        | 0.01         | 0.009        | 0.005        | 0.004        |
| Langelier Index - 25 degree                         | None                 |             |        | 0.6          | 0.41         | 0.8          | 0.64         | 0.72         | 0.64         | 0.67         | 0.5          | 0.76         | 0.58         | 0.78         | 0.76         |
| Magnesium, Total, ICAP                              | mg/l                 | _           |        | 5.7          | 5.8          | 12<br>ND     | 13<br>ND     | 18<br>ND     | 19<br>ND     | 19           | 20<br>ND     | 17<br>ND     | 17<br>ND     | 34<br>ND     | 35<br>ND     |
| Mercury<br>Nitrate-N by IC                          | ug/l                 | 10          | p      | ND<br>ND     | ND<br>ND     | ND<br>1.9    | ND<br>1.8    | ND<br>3      | ND<br>2.9    | ND 2.3       | ND<br>2.2    | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     |
| Nitrate-N by IC  Nitrite, Nitrogen by IC            | mg/l<br>mg/l         | 10          | p<br>p | ND<br>ND     | ND<br>ND     | ND           | ND           | ND           | ND           | ND           | ND           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     |
| Potassium, Total, ICAP                              | mg/l                 | <u> </u>    | Р      | 2.8          | 2.9          | 3.5          | 3.5          | 3.2          | 3.4          | 4.2          | 4.4          | 3.5          | 3.6          | 5.7          | 5.8          |
| Sodium, Total, ICAP                                 | mg/l                 |             |        | 26           | 25           | 27           | 27           | 30           | 30           | 57           | 57           | 26           | 25           | 82           | 81           |
| Sulfate                                             | mg/l                 | 250         | S      | 16           | 17           | 86           | 86           | 120          | 120          | 140          | 130          | 77           | 74           | 210          | 270          |
| Surfactants                                         | mg/l                 | 0.5         | s      | ND           |
| Total Nitrate, Nitrite-N, CALC                      | mg/l                 | 10          | p      | ND           | ND           | 1.9          | 1.8          | 3            | 2.9          | 2.3          | 2.2          | ND           | ND           | ND           | ND           |
| Total Organic Carbon                                | mg/l                 |             |        | ND           | ND           | ND           | ND           | ND           | ND           | 0.6          | ND           | ND           | ND           | 0.71         | 0.7          |
| Carbon Dioxide                                      | mg/l                 |             |        | 2.22         | 3.52         | 2.86         | 4.76         | 4.63         | 6.09         | 6.85         | 11.2         | 5.87         | 9.78         | 21.1         | 29.5         |
| Apparent Color                                      | ACU                  | 15          | S      | 3            | ND           | ND           | ND           | 3            | 3            | 3            | 3            | 5            | 3            | ND           | 3            |
| Lab pH                                              | Units                | 13          | 3      | 8.2          | 8            | 8.1          | 7.9          | 7.9          | 7.8          | 7.8          | 7.6          | 7.9          | 7.7          | 7.5          | 7.4          |
| Odor                                                | TON                  | 3           | s      | 1            | 1            | 1            | 1            | 2            | 2            | 1            | 3            | 2            | 2            | 2            | 4            |
| pH of CaCO3 saturation(25C)                         | Units                |             |        | 7.597        | 7.587        | 7.298        | 7.265        | 7.18         | 7.162        | 7.133        | 7.101        | 7.143        | 7.116        | 6.718        | 6.645        |
| pH of CaCO3 saturation(60C)                         | Units                |             |        | 7.2          | 7.1          | 6.9          | 6.8          | 6.7          | 6.7          | 6.7          | 6.7          | 6.7          | 6.7          | 6.3          | 6.2          |
| Specific Conductance                                | umho/cm              |             |        | 342          | 336          | 590          | 592          | 766          | 759          | 861          | 854          | 654          | 630          | 1290         | 1340         |
| Metals                                              |                      |             |        |              |              |              |              |              |              |              |              |              |              |              |              |
| Aluminum, Total, ICAP/MS                            | ug/l                 | 1000        | p      | ND           | ND           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND           | ND           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     |
| Antimony, Total, ICAP/MS Arsenic, Total, ICAP/MS    | ug/l<br>ug/l         | 50          | p<br>p | ND<br>2.9    | ND<br>3      | 2.5          | 2.4          | 3.1          | 3.4          | ND<br>2      | ND<br>2      | 4.3          | 4.4          | 2.7          | 3            |
| Barium, Total, ICAP/MS                              | ug/l                 | 1000        | р      | 97           | 94           | 160          | 160          | 140          | 140          | 95           | 94           | 240          | 210          | 70           | 66           |
| Beryllium, Total, ICAP/MS                           | ug/l                 | 4           | р      | ND           |
| Chromium, Total, ICAP/MS                            | ug/l                 | 50          | р      | 3.3          | 4.9          | 1.9          | 3.7          | 1.3          | 3.6          | ND           | 4.1          | ND           | 5.8          | ND           | 12           |
| Hexavalent Chromium (Cr VI)                         | mg/l                 |             |        |              |              |              |              |              |              |              |              |              |              |              |              |
| Cadmium, Total, ICAP/MS                             | ug/l                 | 5           | p      | ND           |
| Copper, Total, ICAP/MS                              | ug/l                 | 1000        | S      | ND           |
| Lead, Total, ICAP/MS<br>Nickel, Total, ICAP/MS      | ug/l                 | 15          |        | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND     | ND<br>5.2    | ND<br>ND     | ND<br>ND     | ND           | ND<br>8.0    |
| Selenium, Total, ICAP/MS                            | ug/l<br>ug/l         | 100<br>50   | p<br>p | ND<br>ND     | 5.3<br>ND    | ND<br>ND     | ND<br>ND     | 6.3<br>ND    | 8.9<br>ND    |
| Silver, Total, ICAP/MS                              | ug/l                 | 100         | s      | ND           |
| Thallium, Total, ICAP/MS                            | ug/l                 | 2           | p      | ND           |
| Zinc, Total, ICAP/MS                                | ug/l                 | 5000        | S      | ND           |
| Volatile Organic Compounds                          |                      |             |        |              |              |              |              |              |              |              |              |              |              |              |              |
| Trichloroethylene (TCE)                             | ug/l                 | 5           | p      | ND           | 0.97         | 0.8          | 2.09         | 1.6          |
| Tetrachloroethylene (PCE)                           | ug/l                 | 5           | p      | ND           | ND           | ND           | ND           | 0.79         | 0.6          | ND           | ND           | ND           | ND           | ND           | ND           |
| 1,1-Dichloroethylene                                | ug/l                 | 6           | p      | ND           | ND<br>ND     | ND           | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND           | ND<br>5.94   | ND<br>4.4    |
| cis-1,2-Dichloroethylene<br>Carbon Tetrachloride    | ug/l<br>ug/l         | 0.5         | p<br>p | ND<br>ND     | 5.84<br>ND   | 4.4<br>ND    |
| 1,1-Dichloroethane                                  | ug/l                 | 100         | p      | ND           |
| 1,2-Dichloroethane                                  | ug/l                 | 0.5         | р      | ND           |
| Fluorotrichloromethane-Freon11                      | ug/l                 | 150         | p      | ND           |
| Isopropylbenzene                                    | ug/l                 |             |        | ND           |
| n-Propylbenzene                                     | ug/l                 |             |        | ND           |
| Dichlorodifluoromethane                             |                      |             |        | ND           |
| Benzene                                             | ug/l                 |             | -      | 3.7-         | 3            |              |              |              |              |              |              |              |              |              | I NID        |
|                                                     | ug/l                 | 1           | р      | ND           |
| m,p-Xylenes                                         | ug/l<br>ug/l         | 1750        | p      | ND           |
| m,p-Xylenes<br>Toluene                              | ug/l<br>ug/l<br>ug/l | 1750<br>150 | p<br>p | ND<br>ND     |
| m,p-Xylenes                                         | ug/l<br>ug/l         | 1750        | p      | ND           |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

(p): Primary MCL (s): Secondary MCL (ND): Not Detected

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 6 of 21

| Water Quality Constituents                         |                      |             | ype      | Huntington<br>Park #1 |
|----------------------------------------------------|----------------------|-------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Water Quality Constituents                         | ts                   | ٦           | MCL Type | Zone 1                | Zone 1                | Zone 2                | Zone 2                | Zone 3                | Zone 3                | Zone 4                | Zone 4                |
|                                                    | Units                | MCL         | MC       | 4/28/2004             | 9/24/2004             | 4/28/2004             | 9/24/2004             | 4/28/2004             | 9/24/2004             | 4/28/2004             | 9/24/2004             |
| Total Dissolved Solid (TDS)                        | mg/l                 | 1000        | s        | 360                   | 370                   | 370                   | 370                   | 600                   | 620                   | 690                   | 700                   |
| Cation Sum                                         | meq/l                |             |          | 6.16                  | 6.11                  | 6.21                  | 6.3                   | 9.63                  | 10.4                  | 11.7                  | 11.8                  |
| Anion Sum                                          | meq/l                |             |          | 5.82                  | 4.63                  | 5.86                  | 5.81                  | 9.73                  | 9.83                  | 11.3                  | 11.3                  |
| Iron, Total, ICAP                                  | mg/l                 | 0.3         | s        | ND                    | 0.2                   | ND                    | ND                    | ND                    | ND                    | ND                    | ND                    |
| Manganese, Total, ICAP/MS                          | ug/l                 | 50          | S        | 44                    | 60                    | 2.8                   | 3.5                   | ND                    | ND                    | ND                    | ND                    |
| Turbidity                                          | NTU                  | 5           | S        | 0.7<br>174            | 0.65<br>169           | 0.35<br>178           | 0.5<br>170            | 0.1<br>220            | 0.1<br>223            | 0.1<br>269            | 0.35<br>257           |
| Alkalinity<br>Boron                                | mg/l<br>mg/l         |             |          | 0.14                  | 0.15                  | 0.14                  | 0.16                  | 0.18                  | 0.2                   | 0.18                  | 0.19                  |
| Bicarbonate as HCO3,calculated                     | mg/l                 |             |          | 212                   | 206                   | 217                   | 207                   | 268                   | 271                   | 328                   | 313                   |
| Calcium, Total, ICAP                               | mg/l                 |             |          | 62                    | 61                    | 63                    | 63                    | 100                   | 110                   | 130                   | 130                   |
| Carbonate as CO3, Calculated                       | mg/l                 |             |          | 1.09                  | 0.845                 | 1.41                  | 1.69                  | 1.1                   | 2.79                  | 1.34                  | 1.02                  |
| Hardness (Total, as CaCO3)                         | mg/l                 |             | Г        | 217                   | 214                   | 219                   | 219                   | 361                   | 390                   | 456                   | 456                   |
| Chloride                                           | mg/l                 | 250         | s        | 20                    | 11                    | 20                    | 21                    | 54                    | 57                    | 63                    | 65                    |
| Fluoride                                           | mg/l                 | 2           | p        | 0.49                  | 0.51                  | 0.44                  | 0.44                  | 0.37                  | 0.36                  | 0.37                  | 0.37                  |
| Hydroxide as OH, Calculated                        | mg/l                 |             |          | 0.01                  | 0.01                  | 0.02                  | 0.02                  | 0.01                  | 0.03                  | 0.01                  | 0.009                 |
| Langelier Index - 25 degree                        | None                 |             |          | 0.57                  | 0.45                  | 0.69                  | 0.77                  | 0.78                  | 1.2                   | 0.98                  | 0.86                  |
| Magnesium, Total, ICAP                             | mg/l                 | _           |          | 15<br>ND              | 15                    | 15                    | 15                    | 27                    | 28                    | 32                    | 32                    |
| Mercury                                            | ug/l                 | 2           | p        | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND                    | ND<br>5 °             | ND<br>4 9             | ND<br>4.0             |
| Nitrate-N by IC Nitrite, Nitrogen by IC            | mg/l<br>mg/l         | 10          | p        | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | 6.3<br>ND             | 5.8<br>ND             | 4.8<br>ND             | 4.9<br>ND             |
| Potassium, Total, ICAP                             | mg/l<br>mg/l         | 1           | p        | 3.3                   | 3.4                   | 3.2                   | 3.4                   | ND 4                  | 4.6                   | 4.5                   | 4.6                   |
| Sodium, Total, ICAP                                | mg/l                 |             |          | 40                    | 40                    | 40                    | 42                    | 53                    | 56                    | 57                    | 58                    |
| Sulfate                                            | mg/l                 | 250         | s        | 84                    | 44                    | 82                    | 86                    | 160                   | 160                   | 180                   | 190                   |
| Surfactants                                        | mg/l                 | 0.5         | S        | ND                    |
| Total Nitrate, Nitrite-N, CALC                     | mg/l                 | 10          | р        | ND                    | ND                    | ND                    | ND                    | 6.3                   | 5.8                   | 4.8                   | 4.9                   |
| Total Organic Carbon                               | mg/l                 |             |          | ND                    | ND                    | ND                    | ND                    | 0.7                   | ND                    | 0.6                   | ND                    |
| Carbon Dioxide                                     | mg/l                 |             |          | 5.34                  | 6.53                  | 4.34                  | 3.29                  | 8.5                   | 3.42                  | 10.4                  | 12.5                  |
| General Physicals                                  |                      |             | _        |                       |                       |                       |                       |                       |                       |                       |                       |
| Apparent Color                                     | ACU                  | 15          | S        | 3                     | 3                     | 3                     | ND                    | ND                    | ND                    | 3                     | 3                     |
| Lab pH                                             | Units                |             |          | 7.9                   | 7.8                   | 8                     | 8.1                   | 7.8                   | 8.2                   | 7.8                   | 7.7                   |
| Odor                                               | TON                  | 3           | S        | 1 7.226               | 2                     | 1 7 200               | 1 7.22                | 1                     | 2                     | 1                     | 2                     |
| pH of CaCO3 saturation(25C)                        | Units                |             |          | 7.326<br>6.9          | 7.346<br>6.9          | 7.309<br>6.9          | 7.33<br>6.9           | 7.017<br>6.6          | 6.971<br>6.5          | 6.815                 | 6.836                 |
| pH of CaCO3 saturation(60C) Specific Conductance   | umho/cm              |             |          | 561                   | 576                   | 565                   | 579                   | 897                   | 945                   | 1030                  | 1040                  |
| Metals                                             | umno/em              | <u> </u>    | Щ        | 301                   | 370                   | 303                   | 317                   | 677                   | 743                   | 1050                  | 1040                  |
| Aluminum, Total, ICAP/MS                           | ug/l                 | 1000        | р        | ND                    |
| Antimony, Total, ICAP/MS                           | ug/l                 | 6           | p        | ND                    |
| Arsenic, Total, ICAP/MS                            | ug/l                 | 50          | р        | ND                    | 1.2                   | ND                    | ND                    | ND                    | ND                    | ND                    | ND                    |
| Barium, Total, ICAP/MS                             | ug/l                 | 1000        | р        | 53                    | 62                    | 66                    | 76                    | 100                   | 120                   | 89                    | 99                    |
| Beryllium, Total, ICAP/MS                          | ug/l                 | 4           | p        | ND                    |
| Chromium, Total, ICAP/MS                           | ug/l                 | 50          | p        | 1.7                   | 2.9                   | 2.4                   | 3.4                   | 23                    | 11                    | 4.4                   | 6.7                   |
| Hexavalent Chromium (Cr VI)                        | mg/l                 |             |          |                       |                       |                       |                       |                       |                       |                       |                       |
| Cadmium, Total, ICAP/MS                            | ug/l                 | 5           | p        | ND                    |
| Copper, Total, ICAP/MS                             | ug/l                 | 1000        | S        | ND                    |
| Lead, Total, ICAP/MS                               | ug/l                 | 15          |          | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND                    | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS | ug/l<br>ug/l         | 100<br>50   | p<br>p   | ND                    | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | 6.2                   | ND<br>ND              |
| Silver, Total, ICAP/MS                             | ug/l                 | 100         | s        | ND                    | ND                    | ND<br>ND              | ND                    | ND                    | ND                    | ND                    | ND                    |
| Thallium, Total, ICAP/MS                           | ug/l                 | 2           | p        | ND                    |
| Zinc, Total, ICAP/MS                               | ug/l                 | 5000        | S        | 6.4                   | ND                    |
| Volatile Organic Compounds                         | 0                    |             |          |                       |                       |                       |                       |                       |                       |                       |                       |
| Trichloroethylene (TCE)                            | ug/l                 | 5           | р        | ND                    | ND                    |                       | ND                    | 27                    | 14                    | 0.8                   | 0.6                   |
| Tetrachloroethylene (PCE)                          | ug/l                 | 5           | p        | ND                    | ND                    |                       | ND                    | 0.79                  | 2.8                   | ND                    | ND                    |
| 1,1-Dichloroethylene                               | ug/l                 | 6           | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| cis-1,2-Dichloroethylene                           | ug/l                 | 6           | р        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| Carbon Tetrachloride                               | ug/l                 | 0.5         | p        | ND                    | ND                    |                       | ND                    | 24                    | 10                    | ND                    | ND                    |
| 1,1-Dichloroethane                                 | ug/l                 | 100         | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| 1,2-Dichloroethane                                 | ug/l                 | 0.5         | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| Fluorotrichloromethane-Freon11                     | ug/l                 | 150         | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| Isopropylbenzene                                   | ug/l                 |             |          | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND                    |
| n-Propylbenzene                                    | ug/l                 |             |          | ND<br>ND              | ND<br>ND              |                       | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              |
| Dichlorodifluoromethane                            | ug/l                 |             |          | ND<br>ND              | ND<br>ND              |                       | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              |
| Danzana                                            |                      | 1           |          |                       |                       |                       | i INIJ                | ND                    | ı ND                  | ı IND                 | שעו                   |
| Benzene<br>m n-Yylenes                             | ug/l                 | 1750        | p        |                       |                       |                       |                       |                       |                       |                       | ND                    |
| m,p-Xylenes                                        | ug/l<br>ug/l         | 1750        | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    | ND<br>ND              |
| m,p-Xylenes<br>Toluene                             | ug/l<br>ug/l<br>ug/l | 1750<br>150 | p<br>p   | ND<br>ND              | ND<br>ND              |                       | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND<br>ND              | ND                    |
| m,p-Xylenes                                        | ug/l<br>ug/l         | 1750        | p        | ND                    | ND                    |                       | ND                    | ND                    | ND                    | ND                    |                       |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 7 of 21**

|                                                     |               |           |          |                   | 1 age / 01 2            |                          |                         |                  |                 |
|-----------------------------------------------------|---------------|-----------|----------|-------------------|-------------------------|--------------------------|-------------------------|------------------|-----------------|
|                                                     |               |           | e.       |                   |                         |                          |                         |                  |                 |
| Water Quality Constituents                          |               |           | MCL Type | Inglewood #2      | Inglewood #2            | Inglewood #2             | Inglewood #2            | Inglewood #2     | Inglewood #2    |
|                                                     | Units         | MCL       | CL       | Zone 1            | Zone 1                  | Zone 2                   | Zone 2                  | Zone 3           | Zone 3          |
| Tetal Disselved Calid (TDC)                         |               | 1000      | -        | 3/10/2004<br>1690 | 9/1/2004<br><b>1670</b> | 3/10/2004<br><b>1550</b> | 9/1/2004<br><b>1510</b> | 3/10/2004<br>310 | 9/1/2004<br>300 |
| Total Dissolved Solid (TDS) Cation Sum              | mg/l<br>meq/l | 1000      | S        | 28.1              | 28.5                    | 25.3                     | 25.8                    | 5.42             | 5.41            |
| Anion Sum                                           | meq/l         |           |          | 22.5              | 27.4                    | 19.8                     | 25.1                    | 4.9              | 4.96            |
| Iron, Total, ICAP                                   | mg/l          | 0.3       | s        | 0.6               | 0.59                    | 0.48                     | 0.52                    | 0.17             | 0.14            |
| Manganese, Total, ICAP/MS                           | ug/l          | 50        | S        | 35                | 35                      | 48                       | 53                      | 49               | 46              |
| Turbidity                                           | NTU           | 5         | S        | 6.2               | 2.1                     | 38                       | 12                      | 2.1              | 1.7             |
| Alkalinity<br>Boron                                 | mg/l<br>mg/l  |           |          | 3.9               | 1330<br>4.1             | 961<br>3.4               | 1230<br>3.3             | 219<br>0.2       | 0.23            |
| Bicarbonate as HCO3,calculated                      | mg/l          |           | Н        | 1320              | 1610                    | 1170                     | 1490                    | 267              | 270             |
| Calcium, Total, ICAP                                | mg/l          |           | Н        | 17                | 17                      | 12                       | 12                      | 33               | 32              |
| Carbonate as CO3, Calculated                        | mg/l          |           |          | 8.58              | 26.3                    | 6.04                     | 24.3                    | 1.38             | 1.39            |
| Hardness (Total, as CaCO3)                          | mg/l          |           |          | 112               | 112                     | 68.7                     | 68.3                    | 132              | 129             |
| Chloride                                            | mg/l          | 250       | S        | 30                | 28                      | 20                       | 18                      | 18               | 18              |
| Fluoride<br>Hydroxide as OH, Calculated             | mg/l          | 2         | р        | 0.53              | 0.57<br>0.04            | 0.29<br>0.01             | 0.3                     | 0.23<br>0.01     | 0.23            |
| Langelier Index - 25 degree                         | mg/l<br>None  |           |          | 0.02              | 1.4                     | 0.61                     | 1.2                     | 0.01             | 0.39            |
| Magnesium, Total, ICAP                              | mg/l          |           | Н        | 17                | 17                      | 9.4                      | 9.3                     | 12               | 12              |
| Mercury                                             | ug/l          | 2         | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Nitrate-N by IC                                     | mg/l          | 10        | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Nitrite, Nitrogen by IC                             | mg/l          | 1         | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Potassium, Total, ICAP                              | mg/l          |           |          | 25                | 25                      | 19                       | 19                      | 6.7              | 6.6             |
| Sodium, Total, ICAP<br>Sulfate                      | mg/l          | 250       |          | 580<br>ND         | 590<br>ND               | 540<br>ND                | 550<br>ND               | 60<br>ND         | 61<br>ND        |
| Surfactants                                         | mg/l<br>mg/l  | 0.5       | S        | ND<br>ND          | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>ND         | ND<br>ND        |
| Total Nitrate, Nitrite-N, CALC                      | mg/l          | 10        | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Total Organic Carbon                                | mg/l          |           | Ť        | 40.3              | 34                      | 23.1                     | 21                      | 1.2              | 1.3             |
| Carbon Dioxide                                      | mg/l          |           |          | 26.4              | 12.8                    | 29.5                     | 11.9                    | 6.72             | 6.8             |
| General Physicals                                   |               |           |          |                   |                         |                          |                         |                  |                 |
| Apparent Color                                      | ACU           | 15        | S        | 350               | 350                     | 200                      | 300                     | 15               | 15              |
| Lab pH<br>Odor                                      | Units<br>TON  | 3         | S        | 8<br>17           | 8.4<br>17               | 7.9<br><b>17</b>         | 8.4<br><b>8</b>         | 7.9<br><b>8</b>  | 7.9<br>17       |
| pH of CaCO3 saturation(25C)                         | Units         | 3         | 3        | 7.094             | 7.008                   | 7.298                    | 7.193                   | 7.5              | 7.508           |
| pH of CaCO3 saturation(60C)                         | Units         |           |          | 6.6               | 6.6                     | 6.9                      | 6.7                     | 7.1              | 7.1             |
| Specific Conductance                                | umho/cm       |           | П        | 2480              | 2440                    | 2260                     | 2250                    | 478              | 481             |
| Metals                                              |               |           |          |                   |                         |                          |                         |                  |                 |
| Aluminum, Total, ICAP/MS                            | ug/l          | 1000      | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Antimony, Total, ICAP/MS<br>Arsenic, Total, ICAP/MS | ug/l<br>ug/l  | 50        | p        | ND<br>2.3         | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>1          | ND<br>ND        |
| Barium, Total, ICAP/MS                              | ug/l          | 1000      | p<br>p   | 42                | 45                      | 23                       | 24                      | 14               | 15              |
| Beryllium, Total, ICAP/MS                           | ug/l          | 4         | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Chromium, Total, ICAP/MS                            | ug/l          | 50        | р        | 2.4               | ND                      | 1.5                      | ND                      | 4.1              | ND              |
| Hexavalent Chromium (Cr VI)                         | mg/l          |           |          |                   |                         |                          |                         |                  |                 |
| Cadmium, Total, ICAP/MS                             | ug/l          | 5         | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Copper, Total, ICAP/MS                              | ug/l          | 1000      | S        | 6.5               | ND                      | ND                       | ND                      | ND               | ND              |
| Lead, Total, ICAP/MS<br>Nickel, Total, ICAP/MS      | ug/l<br>ug/l  | 15<br>100 | р        | ND<br>ND          | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>ND         | ND<br>ND        |
| Selenium, Total, ICAP/MS                            | ug/l          | 50        | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Silver, Total, ICAP/MS                              | ug/l          | 100       | S        | 6.2               | ND                      | ND                       | ND                      | ND               | ND              |
| Thallium, Total, ICAP/MS                            | ug/l          | 2         | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Zinc, Total, ICAP/MS                                | ug/l          | 5000      | S        | 12                | ND                      | 7.4                      | ND                      | ND               | 5.4             |
| Volatile Organic Compounds Trichloroethylene (TCE)  | 11:-/1        | -         |          | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Trichloroethylene (TCE) Tetrachloroethylene (PCE)   | ug/l<br>ug/l  | 5         | p<br>p   | ND<br>ND          | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>ND         | ND<br>ND        |
| 1,1-Dichloroethylene                                | ug/l          | 6         | р        | ND<br>ND          | ND<br>ND                | ND                       | ND                      | ND<br>ND         | ND<br>ND        |
| cis-1,2-Dichloroethylene                            | ug/l          | 6         | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Carbon Tetrachloride                                | ug/l          | 0.5       | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| 1,1-Dichloroethane                                  | ug/l          | 100       | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| 1,2-Dichloroethane                                  | ug/l          | 0.5       | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Fluorotrichloromethane-Freon11                      | ug/l          | 150       | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Isopropylbenzene<br>n-Propylbenzene                 | ug/l<br>ug/l  |           | Н        | ND<br>ND          | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>ND         | ND<br>ND        |
| Dichlorodifluoromethane                             | ug/l          |           | Н        | ND<br>ND          | ND<br>ND                | ND<br>ND                 | ND<br>ND                | ND<br>ND         | ND<br>ND        |
| Benzene                                             | ug/l          | 1         | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| m,p-Xylenes                                         | ug/l          | 1750      | p        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Toluene                                             | ug/l          | 150       | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Ethyl benzene                                       | ug/l          | 700       | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| MTBE                                                | ug/l          | 13        | р        | ND                | ND                      | ND                       | ND                      | ND               | ND              |
| Perchlorate                                         | ug/l          | 6         | p        |                   |                         |                          |                         |                  |                 |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 8 of 21**

|                                                            |                  |      |          |                |                |                | C O O1 2       |                |                |                |                |                |                |                |                |
|------------------------------------------------------------|------------------|------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Water Quality Constituents                                 |                  |      | ype      | Lakewood<br>#1 |
| water quanty constituents                                  | Units            | MCL  | MCL Type | Zone 1         | Zone 1         | Zone 2         | Zone 2         | Zone 3         | Zone 3         | Zone 4         | Zone 4         | Zone 5         | Zone 5         | Zone 6         | Zone 6         |
|                                                            |                  |      |          | 5/24/2004      | 9/20/2004      | 5/24/2004      | 9/20/2004      | 5/24/2004      | 9/20/2004      | 5/24/2004      | 9/20/2004      | 5/24/2004      | 9/20/2004      | 5/24/2004      | 9/20/2004      |
| Total Dissolved Solid (TDS)                                | mg/l             | 1000 | S        | 180            | 170            | 200            | 190            | 220            | 220            | 310            | 310            | 240            | 240            | 430            | 420            |
| Cation Sum<br>Anion Sum                                    | meq/l<br>meq/l   |      |          | 2.79           | 2.88           | 3.33           | 3.69           | 3.77<br>3.47   | 3.82           | 5.37           | 5.45<br>5.33   | 4.21<br>4.44   | 4.2<br>3.82    | 7.45<br>6.35   | 7.05<br>6.83   |
| Iron, Total, ICAP                                          | mg/l             | 0.3  | s        | ND             | ND             | 0.011          | ND             | 0.019          | ND             | 0.1            | 0.1            | 0.097          | 0.1            | 0.33           | 0.83           |
| Manganese, Total, ICAP/MS                                  | ug/l             | 50   | S        | 4.8            | 3.6            | 17             | 16             | 24             | 23             | 145            | 130            | 49             | 49             | 265            | 240            |
| Turbidity                                                  | NTU              | 5    | s        | 0.45           | 0.2            | 0.25           | 0.45           | 3.1            | 1.7            | 1              | 1.2            | 0.35           | 0.25           | 0.7            | 0.45           |
| Alkalinity                                                 | mg/l             |      |          | 91.2           | 90.2           | 129            | 130            | 146            | 150            | 156            | 154            | 193            | 161            | 162            | 189            |
| Boron                                                      | mg/l             |      |          | 0.054          | 0.061          | ND             | ND             | 0.067          | 0.067          | 0.065          | 0.074          | 0.08           | 0.088          | 0.084          | 0.081          |
| Bicarbonate as HCO3,calculated                             | mg/l             |      |          | 109            | 108            | 156            | 158            | 177            | 182            | 190            | 187            | 234            | 196            | 197            | 230            |
| Calcium, Total, ICAP                                       | mg/l             |      |          | 10             | 10             | 33             | 36             | 40             | 40             | 61             | 62             | 47             | 46             | 98             | 91             |
| Carbonate as CO3, Calculated<br>Hardness (Total, as CaCO3) | mg/l             |      |          | 4.47<br>26.4   | 4.43<br>26.4   | 2.55<br>98.9   | 2.58<br>108    | 2.3<br>120     | 2.97<br>120    | 1.55<br>184    | 2.42<br>188    | 2.41<br>153    | 2.02<br>150    | 1.28<br>285    | 1.88<br>265    |
| Chloride                                                   | mg/l<br>mg/l     | 250  | S        | 19             | 21.4           | 6              | 6.4            | 8              | 8.8            | 58             | 65             | 9.5            | 10             | 75             | 70             |
| Fluoride                                                   | mg/l             | 2    | p        | 0.44           | 0.46           | 0.25           | 0.24           | 0.3            | 0.29           | 0.31           | 0.3            | 0.47           | 0.5            | 0.21           | 0.21           |
| Hydroxide as OH, Calculated                                | mg/l             | Ť    | Р        | 0.1            | 0.1            | 0.04           | 0.04           | 0.03           | 0.04           | 0.02           | 0.03           | 0.03           | 0.03           | 0.02           | 0.02           |
| Langelier Index - 25 degree                                | None             |      |          | 0.39           | 0.39           | 0.67           | 0.71           | 0.71           | 0.82           | 0.72           | 0.92           | 0.8            | 0.71           | 0.84           | 0.98           |
| Magnesium, Total, ICAP                                     | mg/l             |      |          | 0.35           | 0.35           | 4              | 4.3            | 5              | 5              | 7.7            | 8              | 8.6            | 8.5            | 9.8            | 9.1            |
| Mercury                                                    | ug/l             | 2    | p        | ND             |
| Nitrate-N by IC                                            | mg/l             | 10   | p        | ND             |
| Nitrite, Nitrogen by IC                                    | mg/l             | 1    | p        | ND             | ND             | ND<br>2        | ND<br>2.2      | ND             | ND             | ND<br>2.0      | ND             | ND<br>2.5      | ND<br>2.6      | ND             | ND             |
| Potassium, Total, ICAP<br>Sodium, Total, ICAP              | mg/l             |      |          | ND<br>52       | ND<br>54       | 30             | 2.2            | 2.3            | 2.3            | 2.9            | 3.1            | 2.5            | 2.6            | 3.7            | 3.7            |
| Sulfate                                                    | mg/l<br>mg/l     | 250  | S        | 16             | 18             | 15             | 17             | 15             | 17             | 17             | 19             | 14             | 14             | 47             | 51             |
| Surfactants                                                | mg/l             | 0.5  | S        | ND             | ND             | ND             | ND             | ND             | ND             | 0.116          | 0.12           | ND             | ND             | ND             | ND             |
| Total Nitrate, Nitrite-N, CALC                             | mg/l             | 10   | р        | ND             |
| Total Organic Carbon                                       | mg/l             |      | г        | 0.9            | 0.8            | ND             | ND             | ND             | ND             | 0.7            | 0.8            | ND             | ND             | 0.7            | 0.6            |
| Carbon Dioxide                                             | mg/l             |      |          | 0.346          | 0.342          | 1.24           | 1.26           | 1.77           | 1.45           | 3.02           | 1.87           | 2.95           | 2.47           | 3.94           | 3.65           |
| General Physicals                                          | •                | •    |          |                |                | •              |                | •              |                | •              |                |                | •              | •              |                |
| Apparent Color                                             | ACU              | 15   | s        | 15             | 15             | 3              | 5              | 5              | 3              | 3              | 3              | 5              | 3              | 3              | 3              |
| Lab pH                                                     | Units            |      |          | 8.8            | 8.8            | 8.4            | 8.4            | 8.3            | 8.4            | 8.1            | 8.3            | 8.2            | 8.2            | 8              | 8.1            |
| Odor                                                       | TON              | 3    | S        | 8              | 1 0.412        | 4 7 722        | 2              | 4 7.505        | 2 7 502        | 8 7 201        | 3              | 8 7 404        | 7.40           | 8 7.150        | 2              |
| pH of CaCO3 saturation(25C)                                | Units            |      |          | 8.408          | 8.412          | 7.733          | 7.69           | 7.595          | 7.583          | 7.381          | 7.381          | 7.404          | 7.49           | 7.159          | 7.124          |
| pH of CaCO3 saturation(60C) Specific Conductance           | Units<br>umho/cm |      |          | 8<br>285       | 8<br>290       | 7.3            | 7.2<br>318     | 7.2<br>351     | 7.1<br>359     | 6.9<br>533     | 6.9<br>549     | 7<br>392       | 394            | 6.7<br>718     | 6.7<br>686     |
| Metals                                                     | unnovem          | l    |          | 203            | 270            | 312            | 310            | 331            | 337            | 333            | 317            | 372            | 371            | 710            | 000            |
| Aluminum, Total, ICAP/MS                                   | ug/l             | 1000 | р        | ND             |
| Antimony, Total, ICAP/MS                                   | ug/l             | 6    | р        | ND             |
| Arsenic, Total, ICAP/MS                                    | ug/l             | 50   | р        | 12             | 11             | 1.5            | 1.3            | 1.1            | ND             | 13             | 13             | 4              | 3.9            | 26             | 24             |
| Barium, Total, ICAP/MS                                     | ug/l             | 1000 | p        | 16             | 16             | 21             | 21             | 28             | 29             | 140            | 150            | 99             | 100            | 265            | 260            |
| Beryllium, Total, ICAP/MS                                  | ug/l             | 4    | p        | ND             |
| Chromium, Total, ICAP/MS                                   | ug/l             | 50   | p        | ND             | 2.4            | ND             | 3.1            | ND             | 3.4            | ND             | 4.1            | ND             | 4.5            | ND             | 5.2            |
| Hexavalent Chromium (Cr VI) Cadmium, Total, ICAP/MS        | mg/l<br>ug/l     | 5    | _        | ND             |
| Copper, Total, ICAP/MS                                     | ug/l             | 1000 | p<br>s   | ND             |
| Lead, Total, ICAP/MS                                       | ug/l             | 15   | 3        | ND             |
| Nickel, Total, ICAP/MS                                     | ug/l             | 100  | р        | ND             |
| Selenium, Total, ICAP/MS                                   | ug/l             | 50   | p        | ND             |
| Silver, Total, ICAP/MS                                     | ug/l             | 100  | S        | ND             |
| Thallium, Total, ICAP/MS                                   | ug/l             | 2    | p        | ND             |
| Zinc, Total, ICAP/MS                                       | ug/l             | 5000 | S        | ND             | 6.9            | ND             |
| Volatile Organic Compounds                                 |                  |      |          | MP             | MP             | NIP            | MP             | NIP            | NIP            | NIP            | MP             | NIP            | NIP            | NIP            | ND             |
| Trichloroethylene (TCE) Tetrachloroethylene (PCE)          | ug/l             | 5    | p        | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND             | ND             | ND             | ND<br>ND       | ND             | ND<br>ND       | ND             | ND             |
| 1,1-Dichloroethylene (PCE)                                 | ug/l<br>ug/l     | 6    | p        | ND<br>ND       |
| cis-1,2-Dichloroethylene                                   | ug/l<br>ug/l     | 6    | p<br>p   | ND             | ND<br>ND       |
| Carbon Tetrachloride                                       | ug/l             | 0.5  | p        | ND             | ND<br>ND       |
| 1,1-Dichloroethane                                         | ug/l             | 100  | р        | ND             |
| 1,2-Dichloroethane                                         | ug/l             | 0.5  | p        | ND             |
| Fluorotrichloromethane-Freon11                             | ug/l             | 150  | p        | ND             |
| Isopropylbenzene                                           | ug/l             |      |          | ND             |
| n-Propylbenzene                                            | ug/l             |      |          | ND             |
| Dichlorodifluoromethane                                    | ug/l             |      |          | ND             |
| Benzene                                                    | ug/l             | 1    | p        | ND             |
| m,p-Xylenes                                                | ug/l             | 1750 | p        | ND             |
| Toluene<br>Ethyl benzene                                   | ug/l             | 150  | p        | ND<br>ND       | ND             |
| Ethyl benzene<br>MTBE                                      | ug/l             | 700  | p        | ND<br>ND       |
| Perchlorate                                                | ug/l<br>ug/l     | 6    | p<br>n   | ND             | MD             | IND            | ND             | MD             | MD             | ND             | ND             | MD             | ND             | ND             | MD             |
| renditate                                                  | ug/I             | 0    | p        |                |                |                |                |                |                |                |                |                |                |                |                |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 9 of 21

| Water Quality Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |      |          | I . Mar. I.     | I - Mar I       | I . Mar. I.     | I - Marila      | I - Mar I       | I - Mar I       | I - Maria       | I - Mar I       | I - Mar I       | I . M I.        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tead Dissorted Steich (TDS)   mag  1   mag  2   000   x   0.50   390   390   320   480   470   470   480   0.20   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430  | Water Quality Constituents |         |      | lype     | La Mirada<br>#1 |
| Tead Dissorted Steich (TDS)   mag  1   mag  2   000   x   0.50   390   390   320   480   470   470   480   0.20   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430   430  |                            | iits    | 5    | CLJ      | Zone 1          | Zone 1          | Zone 2          | Zone 2          | Zone 3          | Zone 3          | Zone 4          | Zone 4          | Zone 5          | Zone 5          |
| Catino Simon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |         |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Auton Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |         | 1000 | S        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Teach Flooring   Company   Company |                            | -       |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Mengament Total (LAPANS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | -       | 0.3  | s        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Akadaminy   mgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 | <b></b>         |                 |
| Hearm   mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turbidity                  | NTU     | 5    | s        | 0.1             | 0.15            | 0.4             | 0.35            | 0.1             | 0.1             | 0.4             | 0.35            | 0.1             | 0.25            |
| Beathoniane BROS-acclusioned   mg2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alkalinity                 | mg/l    |      |          |                 |                 | 135             |                 |                 |                 |                 |                 |                 |                 |
| Cacionar, troad, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Carbonate as COJ, Calculated   mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · .                        |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Hardmoor Groal, as CaCO33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                          |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Hydroxide as OH, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         | 250  | s        |                 |                 |                 |                 |                 |                 |                 | 63              |                 |                 |
| Langelier Index - 25 degree   None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fluoride                   | mg/l    | 2    | р        | 0.77            | 0.78            | 0.57            | 0.59            | 0.75            | 0.74            | 0.54            | 0.54            | 0.5             | 0.36            |
| Magnesiam, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Meseury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Nirela Nirela Ny   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         | 2    | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Narice   Narice   Mirrogen   P.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | ŭ       |      | <u> </u> |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Polassiant   Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | - v     |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Sodium   Total   CAP   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |      | r        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Surfactanis   mg    0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |      |          | 110             | 110             | 83              | 81              | 91              | 86              | 83              | 82              | 84              | 89              |
| Total Nirate, Nirate, N.CALC   mg/l   0   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |         |      | S        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | _       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | ·       | 10   | p        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | mg/1    |      | _        | 1.77            | 1.11            | 1.51            | 0.76            | 2.76            | 2.1             | 7.01            | 4.02            | 7.20            | 3.30            |
| Older                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | ACU     | 15   | S        | ND              | 5               | ND              | 3               | 3               | ND              | 3               | 3               | ND              | 3               |
| PIF of CaCO3 saturation(25C)   Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab pH                     | Units   |      |          | 8.4             | 8.5             | 8.4             | 8.5             | 8.2             | 8.3             | 7.8             | 8               | 7.8             | 7.9             |
| pH of CaCO3 saturation(60C)   Units   Value   7.5   7.6   7.8   7.8   7.3   7.3   7.3   6.9   6.9   6.9   6.9   6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Odor                       | TON     | 3    | s        | -               |                 |                 | 1               | 1               |                 | -               |                 |                 |                 |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . ,                        |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                          |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Aluminum, Total, ICAPMS   ug/l   1000   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                          | umho/cm |      | _        | 399             | 392             | 414             | 424             | 523             | 530             | 112             | 792             | /58             | 909             |
| Antimony, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | ug/l    | 1000 | р        | ND              |
| Barium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic, Total, ICAP/MS    | ug/l    | 50   | p        | 6.1             | 6.1             | 6.9             | 6.8             | 7               | 6.8             | 3.2             | 4.5             | 1.8             | 1.3             |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |         |      | p        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Hexavalent Chromium (Cr VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |         | 50   | p        | ND              | ND              | ND              | ND              | ND              | ND              | 1.5             | ND              | 1.7             | 1.5             |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         | 5    | n        | ND              |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | ŭ       |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead, Total, ICAP/MS       | ·       | 15   |          | ND              |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |      | p        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | _       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | _       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | _       |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | ug/1    | 3000 | 3        | ND              |
| 1,1-Dichlorocthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | ug/l    | 5    | р        | ND              |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | ug/l    |      | р        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |         |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | _       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| 1,2-Dichloroethane         ug/l         0.5         p         ND         ND <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |      | <u> </u> |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Fluorotrichloromethane-Freon11         ug/l         150         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | ·       |      | -        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |         |      | <u> </u> |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Dichlorodifluoromethane         ug/l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |      | Ĺ        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Benzene   ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n-Propylbenzene            |         |      |          | ND              | ND              | ND              |                 |                 | ND              | ND              |                 |                 |                 |
| m,p-Xylenes         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |      |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Toluene   ug/1   150   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         | _    |          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Ethyl benzene         ug/l         700         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| MTBE ug/l 13 p ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | ŭ       | _    | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | ·       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | _       |      | _        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 10 of 21

|                                                |               |      |          |             | _          | age 10       | VI <b>-</b> I |              |            |            |                    |              |              |
|------------------------------------------------|---------------|------|----------|-------------|------------|--------------|---------------|--------------|------------|------------|--------------------|--------------|--------------|
|                                                |               |      |          | Long        | Long       | Long         | Long          | Long         | Long       | Long       | Long               | Long         | Long         |
| Water Quality Constituents                     |               |      | ype      | Beach #1    | Beach #1   | Beach #1     | Beach #1      | Beach #1     | Beach #1   | Beach #1   | Beach #1           | Beach #1     | Beach #1     |
| water Quanty constituents                      | Units         | 17   | MCL Type | Zone 1      | Zone 1     | Zone 2       | Zone 2        | Zone 3       | Zone 4     | Zone 4     | Zone 5             | Zone 6       | Zone 6       |
|                                                |               | MCL  | _        | 4/19/2004   | 9/14/2004  | 4/19/2004    | 9/14/2004     | 4/19/2004    | 4/19/2004  | 9/15/2004  | 4/19/2004          | 4/19/2004    | 9/15/2004    |
| Total Dissolved Solid (TDS)                    | mg/l          | 1000 | S        | 230         | 240        | 220          | 240           | 180          | 230        | 250        | 1240               | 890          | 970          |
| Cation Sum                                     | meq/l         |      |          | 3.75        | 3.66       | 3.63<br>3.45 | 3.67          | 3.12<br>2.91 | 3.81       | 3.7        | 19.6<br>20.9       | 14.6<br>14.4 | 15.3<br>16.4 |
| Anion Sum<br>Iron, Total, ICAP                 | meq/l<br>mg/l | 0.3  | s        | 3.5<br>0.02 | 0.02       | 0.018        | 3.5<br>0.021  | 2.91<br>ND   | 3.57<br>ND | 3.66<br>ND | 0.038              | 0.12         | 0.14         |
| Manganese, Total, ICAP/MS                      | ug/l          | 50   | S        | 2.6         | 3          | ND           | 3.7           | 3.5          | 19         | 23         | 130                | 330          | 370          |
| Turbidity                                      | NTU           | 5    | s        | 0.6         | 0.3        | 0.25         | 0.6           | 1.1          | 5.4        | 10         | 1.8                | 9.9          | 0.7          |
| Alkalinity                                     | mg/l          |      |          | 155         | 154        | 151          | 152           | 117          | 133        | 133        | 143                | 211          | 215          |
| Boron                                          | mg/l          |      |          | 0.23        | 0.2        | 0.22         | 0.2           | 0.092        | 0.082      | 0.071      | 0.096              | 0.096        | 0.097        |
| Bicarbonate as HCO3,calculated                 | mg/l          |      |          | 183         | 182        | 178          | 181           | 140          | 161        | 161        | 174                | 257          | 262          |
| Calcium, Total, ICAP                           | mg/l          |      |          | 2.5         | 2.4        | 2.7          | 2.7           | 5.3          | 20         | 19         | 130                | 170          | 180          |
| Carbonate as CO3, Calculated                   | mg/l          |      |          | 15          | 14.9       | 14.6         | 11.8          | 7.23         | 3.31       | 3.31       | 1.13               | 1.33         | 1.7          |
| Hardness (Total, as CaCO3)                     | mg/l          | 250  |          | 7.19        | 6.86       | 7.36         | 7.32          | 14.6         | 58.2       | 55.3       | 407                | 544          | 573          |
| Chloride<br>Fluoride                           | mg/l          | 250  | S        | 0.63        | 15<br>0.64 | 0.62         | 15            | 0.63         | 0.4        | 0.38       | <b>410</b><br>0.18 | 170<br>0.28  | 200<br>0.25  |
| Hydroxide as OH, Calculated                    | mg/l<br>mg/l  |      | p        | 0.63        | 0.64       | 0.62         | 0.64          | 0.63         | 0.05       | 0.38       | 0.18               | 0.28         | 0.23         |
| Langelier Index - 25 degree                    | None          |      |          | 0.31        | 0.29       | 0.34         | 0.24          | 0.33         | 0.56       | 0.54       | 0.02               | 1.1          | 1.2          |
| Magnesium, Total, ICAP                         | mg/l          |      |          | 0.23        | 0.21       | 0.15         | 0.14          | 0.32         | 2          | 1.9        | 20                 | 29           | 30           |
| Mercury                                        | ug/l          | 2    | р        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Nitrate-N by IC                                | mg/l          | 10   | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Nitrite, Nitrogen by IC                        | mg/l          | 1    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Potassium, Total, ICAP                         | mg/l          |      |          | ND          | ND         | ND           | ND            | ND           | 1.4        | 1.2        | 4.6                | 3.9          | 3.8          |
| Sodium, Total, ICAP                            | mg/l          | 2.50 |          | 83<br>ND    | 81<br>ND   | 80<br>ND     | 81<br>ND      | 65           | 60         | 59         | 260                | 82           | 85           |
| Sulfate                                        | mg/l          | 250  | S        | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | 12<br>ND     | 28<br>ND   | 31<br>ND   | 310<br>ND          | 260<br>ND    | 310<br>ND    |
| Surfactants Total Nitrate, Nitrite-N, CALC     | mg/l          | 0.5  | S        | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     | ND<br>ND     |
| Total Organic Carbon                           | mg/l<br>mg/l  | 10   | p        | 4.1         | 2.7        | 3            | 4.2           | 1.5          | 0.6        | ND<br>ND   | 1.2                | 1.3          | 1.3          |
| Carbon Dioxide                                 | mg/l          |      |          | 0.291       | 0.289      | 0.283        | 0.362         | 0.352        | 1.02       | 1.02       | 3.48               | 6.47         | 5.24         |
| General Physicals                              | mg i          |      |          | 0.271       | 0.20)      | 0.203        | 0.002         | 0.002        | 1.02       | 1.02       | 2.10               | 0.17         | 5.21         |
| Apparent Color                                 | ACU           | 15   | S        | 80          | 80         | 100          | 80            | 40           | 10         | 10         | 5                  | 5            | 5            |
| Lab pH                                         | Units         |      |          | 9.1         | 9.1        | 9.1          | 9             | 8.9          | 8.5        | 8.5        | 8                  | 7.9          | 8            |
| Odor                                           | TON           | 3    | s        | 4           | 3          | 8            | 4             | 8            | 4          | 4          | 4                  | 4            | 4            |
| pH of CaCO3 saturation(25C)                    | Units         |      |          | 8.785       | 8.805      | 8.763        | 8.756         | 8.575        | 7.937      | 7.959      | 7.091              | 6.805        | 6.771        |
| pH of CaCO3 saturation(60C)                    | Units         |      |          | 8.3         | 8.4        | 8.3          | 8.3           | 8.1          | 7.5        | 7.5        | 6.6                | 6.4          | 6.3          |
| Specific Conductance                           | umho/cm       |      |          | 355         | 341        | 346          | 339           | 303          | 361        | 364        | 2030               | 1380         | 1430         |
| Metals Aluminum, Total, ICAP/MS                | ug/l          | 1000 | р        | 32          | 26         | ND           | 25            | ND           | ND         | 26         | ND                 | ND           | ND           |
| Antimony, Total, ICAP/MS                       | ug/l          | 6    | р        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Arsenic, Total, ICAP/MS                        | ug/l          | 50   | р        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | 1.9                | 8.7          | 9.8          |
| Barium, Total, ICAP/MS                         | ug/l          | 1000 | р        | ND          | 2.3        | ND           | 2.4           | ND           | 5.7        | 6.9        | 89                 | 260          | 290          |
| Beryllium, Total, ICAP/MS                      | ug/l          | 4    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Chromium, Total, ICAP/MS                       | ug/l          | 50   | p        | ND          | ND         | ND           | 4.8           | ND           | 1.6        | 1.1        | 2                  | 3            | 2.1          |
| Hexavalent Chromium (Cr VI)                    | mg/l          |      |          |             |            |              |               |              |            |            |                    |              |              |
| Cadmium, Total, ICAP/MS                        | ug/l          | 5    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Copper, Total, ICAP/MS                         | ug/l          | 1000 | S        | ND          | ND         | ND           | 5.2           | ND           | ND         | ND         | ND                 | ND           | ND           |
| Lead, Total, ICAP/MS<br>Nickel, Total, ICAP/MS | ug/l<br>ug/l  | 15   | -        | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     | ND<br>ND     |
| Selenium, Total, ICAP/MS                       | ug/l<br>ug/l  | 50   | p<br>p   | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     | ND<br>ND     |
| Silver, Total, ICAP/MS                         | ug/l          | 100  | p<br>s   | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND            | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     | ND           |
| Thallium, Total, ICAP/MS                       | ug/l          | 2    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Zinc, Total, ICAP/MS                           | ug/l          | 5000 | S        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           | ND           |
| Volatile Organic Compounds                     |               |      |          |             |            |              |               |              |            |            |                    |              |              |
| Trichloroethylene (TCE)                        | ug/l          | 5    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Tetrachloroethylene (PCE)                      | ug/l          | 5    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| 1,1-Dichloroethylene                           | ug/l          | 6    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| cis-1,2-Dichloroethylene                       | ug/l          | 6    | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Carbon Tetrachloride 1,1-Dichloroethane        | ug/l          | 0.5  | p        | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     |              |
| 1,1-Dichloroethane                             | ug/l<br>ug/l  | 0.5  | p        | ND<br>ND    | ND<br>ND   | ND<br>ND     | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     |              |
| Fluorotrichloromethane-Freon11                 | ug/l          | 150  | p<br>p   | ND          | ND<br>ND   | ND<br>ND     | ND            | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND           | ND<br>ND     |              |
| Isopropylbenzene                               | ug/l          | 150  | P        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| n-Propylbenzene                                | ug/l          |      |          | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Dichlorodifluoromethane                        | ug/l          |      |          | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Benzene                                        | ug/l          | 1    | р        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| m,p-Xylenes                                    | ug/l          | 1750 | р        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Toluene                                        | ug/l          | 150  | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Ethyl benzene                                  | ug/l          | 700  | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| MTBE                                           | ug/l          | 13   | p        | ND          | ND         | ND           | ND            | ND           | ND         | ND         | ND                 | ND           |              |
| Perchlorate                                    | ug/l          | 6    | p        |             |            |              |               |              |            |            |                    |              |              |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 11 of 21

|                                                         |               |            | e      | Long              | Long              | Long             | Long             | Long             | Long             | Long             | Long             | Long              | Long                     | Long              | Long              |
|---------------------------------------------------------|---------------|------------|--------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|--------------------------|-------------------|-------------------|
| Water Quality Constituents                              |               |            | Type   | Beach #2          | Beach #2          | Beach #2         | Beach #2         | Beach #2         | Beach #2         | Beach #2         | Beach #2         | Beach #2          | Beach #2                 | Beach #2          | Beach #2          |
|                                                         | Units         | MCL        | MCL    | Zone 1            | Zone 1            | Zone 2           | Zone 2           | Zone 3           | Zone 3           | Zone 4           | Zone 4           | Zone 5            | Zone 5                   | Zone 6            | Zone 6            |
| Total Dissolved Solid (TDS)                             |               | 1000       |        | 5/12/2004         | 9/16/2004         | 3/9/2004         | 8/26/2004<br>300 | 5/12/2004<br>240 | 9/16/2004<br>240 | 5/12/2004<br>280 | 9/16/2004<br>280 | 5/12/2004         | 9/16/2004<br><b>1000</b> | 5/12/2004<br>1180 | 9/16/2004<br>1150 |
| Cation Sum                                              | mg/l<br>meq/l | 1000       | S      | 7.53              | 7.07              | 280<br>4.65      | 4.46             | 3.98             | 4.02             | 4.72             | 4.77             | 1000<br>15.5      | 16.5                     | 18.5              | 18.5              |
| Anion Sum                                               | meq/l         |            |        | 6.72              | 6.52              | 4.44             | 4.14             | 3.82             | 3.82             | 4.51             | 4.62             | 15.7              | 16.3                     | 18.6              | 18.4              |
| Iron, Total, ICAP                                       | mg/l          | 0.3        | s      | 0.1               | 0.2               | 0.031            | 0.027            | ND               | ND               | ND               | ND               | 0.15              | 0.17                     | 0.18              | 0.19              |
| Manganese, Total, ICAP/MS                               | ug/l          | 50         | s      | 14                | 18                | 31               | 20               | 8.9              | 9.2              | 28               | 30               | 150               | 160                      | 310               | 310               |
| Turbidity                                               | NTU           | 5          | s      | 1.8               | 2.5               | 0.4              | 0.45             | 0.4              | 0.3              | 2.3              | 1.2              | 0.85              | 1.3                      | 1.5               | 4.9               |
| Alkalinity                                              | mg/l          |            |        | 306<br>0.6        | 295<br>0.56       | 192<br>0.21      | 0.19             | 0.14             | 0.14             | 0.09             | 0.1              | 307<br>0.28       | 300<br>0.3               | 298<br>0.36       | 0.36              |
| Boron Bicarbonate as HCO3,calculated                    | mg/l<br>mg/l  |            |        | 371               | 357               | 233              | 221              | 166              | 160              | 174              | 167              | 374               | 365                      | 363               | 345               |
| Calcium, Total, ICAP                                    | mg/l          |            |        | 7.5               | 7.2               | 14               | 14               | 14               | 14               | 38               | 38               | 170               | 180                      | 200               | 200               |
| Carbonate as CO3, Calculated                            | mg/l          |            |        | 4.81              | 7.34              | 3.02             | 2.28             | 3.41             | 4.14             | 2.26             | 2.73             | 1.53              | 1.88                     | 1.18              | 1.78              |
| Hardness (Total, as CaCO3)                              | mg/l          |            |        | 25.3              | 24.2              | 42.8             | 42.4             | 40.7             | 40.7             | 113              | 113              | 527               | 557                      | 635               | 635               |
| Chloride                                                | mg/l          | 250        | S      | 20                | 21                | 19               | 17               | 21               | 24               | 27               | 32               | 110               | 120                      | 160               | 170               |
| Fluoride                                                | mg/l          | 2          | p      | 0.6               | 0.61              | 0.35             | 0.37             | 0.51             | 0.52             | 0.32             | 0.3              | 0.16              | 0.14                     | 0.3               | 0.29              |
| Hydroxide as OH, Calculated Langelier Index - 25 degree | mg/l<br>None  |            |        | 0.03              | 0.05              | 0.03             | 0.03             | 0.05             | 0.07             | 0.03             | 0.04             | 0.01              | 0.01                     | 0.009             | 0.01              |
| Magnesium, Total, ICAP                                  | mg/l          |            |        | 1.6               | 1.5               | 1.9              | 1.8              | 1.4              | 1.4              | 4.4              | 4.4              | 25                | 26                       | 33                | 33                |
| Mercury                                                 | ug/l          | 2          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Nitrate-N by IC                                         | mg/l          | 10         | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Nitrite, Nitrogen by IC                                 | mg/l          | 1          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Potassium, Total, ICAP                                  | mg/l          |            |        | 2.7               | 2.6               | 2.1              | 1.9              | 1.4              | 1.4              | 2.6              | 2.7              | 4.8               | 5.2                      | 6.1               | 6.3               |
| Sodium, Total, ICAP<br>Sulfate                          | mg/l          | 250        |        | 160<br>ND         | 150<br>ND         | 86<br>2.1        | 82<br>ND         | 72<br>22         | 73               | 55<br>42         | 56<br>45         | 110<br><b>310</b> | 120<br>330               | 130<br><b>390</b> | 130<br>380        |
| Surfactants                                             | mg/l<br>mg/l  | 0.5        | S      | ND                | ND                | ND               | ND               | ND               | ND               | 0.094            | ND               | 0.099             | 0.058                    | 0.154             | 0.101             |
| Total Nitrate, Nitrite-N, CALC                          | mg/l          | 10         | р      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Total Organic Carbon                                    | mg/l          |            |        | 14.3              | 11                | 3.6              | 3.9              | 1.3              | 1.3              | 1.2              | 1.1              | 1.3               | 1.3                      | 1.4               | 1.4               |
| Carbon Dioxide                                          | mg/l          |            |        | 3.72              | 2.26              | 2.34             | 2.79             | 1.05             | 0.804            | 1.74             | 1.33             | 11.9              | 9.19                     | 14.5              | 8.69              |
| General Physicals                                       | 4 077         |            |        | ***               | =00               |                  |                  |                  |                  |                  | -                |                   |                          |                   |                   |
| Apparent Color                                          | ACU<br>Units  | 15         | S      | <b>300</b><br>8.3 | <b>500</b><br>8.5 | <b>35</b><br>8.3 | <b>35</b><br>8.2 | <b>20</b><br>8.5 | <b>20</b><br>8.6 | 5<br>8.3         | 5<br>8.4         | 5<br>7.8          | 5<br>7.9                 | 5<br>7.7          | 5<br>7.9          |
| Lab pH<br>Odor                                          | TON           | 3          | S      | 17                | 4                 | 17               | 8                | 8                | 2                | 8                | 3                | 8                 | 2                        | 17                | 4                 |
| pH of CaCO3 saturation(25C)                             | Units         |            |        | 8.001             | 8.035             | 7.932            | 7.954            | 8.079            | 8.095            | 7.625            | 7.642            | 6.642             | 6.627                    | 6.584             | 6.606             |
| pH of CaCO3 saturation(60C)                             | Units         |            |        | 7.6               | 7.6               | 7.5              | 7.5              | 7.6              | 7.7              | 7.2              | 7.2              | 6.2               | 6.2                      | 6.1               | 6.2               |
| Specific Conductance                                    | umho/cm       |            |        | 645               | 658               | 426              | 436              | 390              | 400              | 460              | 476              | 1440              | 1470                     | 1670              | 1710              |
| Metals                                                  |               | 1 4000     |        |                   | N.D.              | ) ID             | l                | l vin            | l                | l                | VID              |                   | l vin                    | Lun               | l vm              |
| Aluminum, Total, ICAP/MS Antimony, Total, ICAP/MS       | ug/l<br>ug/l  | 1000       | p<br>p | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND                 | ND<br>ND          | ND<br>ND          |
| Arsenic, Total, ICAP/MS                                 | ug/l          | 50         | р      | ND                | ND                | 1.6              | 1.2              | ND               | ND               | 1.4              | 1.5              | 5.2               | 5                        | 7.7               | 7.6               |
| Barium, Total, ICAP/MS                                  | ug/l          | 1000       | p      | 6.1               | 9                 | 10               | 9                | 5.6              | 5.8              | 20               | 22               | 82                | 88                       | 83                | 89                |
| Beryllium, Total, ICAP/MS                               | ug/l          | 4          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Chromium, Total, ICAP/MS                                | ug/l          | 50         | p      | ND                | ND                | 3.6              | ND               | 2.2              | 3.5              | 2.2              | 2.9              | 5.4               | 8.6                      | 5.6               | 8.7               |
| Hexavalent Chromium (Cr VI)                             | mg/l          |            |        | ) ID              | ) ID              | 110              | 7120             | 1170             | 1170             | 1170             | 3.775            | 177               | 1170                     | 1170              | ) ID              |
| Cadmium, Total, ICAP/MS Copper, Total, ICAP/MS          | ug/l<br>ug/l  | 1000       | p<br>s | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND                 | ND<br>ND          | ND<br>ND          |
| Lead, Total, ICAP/MS                                    | ug/l          | 15         | 8      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Nickel, Total, ICAP/MS                                  | ug/l          | 100        | р      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | 7.9                      | ND                | 9.3               |
| Selenium, Total, ICAP/MS                                | ug/l          | 50         | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | 6.8               | ND                |
| Silver, Total, ICAP/MS                                  | ug/l          | 100        | S      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Thallium, Total, ICAP/MS                                | ug/l          | 2          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Zinc, Total, ICAP/MS  Volatile Organic Compounds        | ug/l          | 5000       | S      | 6.3               | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Trichloroethylene (TCE)                                 | ug/l          | 5          | р      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Tetrachloroethylene (PCE)                               | ug/l          | 5          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| 1,1-Dichloroethylene                                    | ug/l          | 6          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| cis-1,2-Dichloroethylene                                | ug/l          | 6          | р      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Carbon Tetrachloride                                    | ug/l          | 0.5        | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| 1,1-Dichloroethane 1,2-Dichloroethane                   | ug/l          | 0.5        | p      | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND                 | ND<br>ND          | ND<br>ND          |
| Fluorotrichloromethane-Freon11                          | ug/l<br>ug/l  | 150        | p<br>p | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND                 | ND<br>ND          | ND<br>ND          |
| Isopropylbenzene                                        | ug/l          | 150        | Р      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| n-Propylbenzene                                         | ug/l          |            |        | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Dichlorodifluoromethane                                 | ug/l          |            |        | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Benzene                                                 | ug/l          | 1          | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| m,p-Xylenes                                             | ug/l          | 1750       | p      | ND                | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND                | ND                       | ND                | ND                |
| Toluene<br>Ethyl benzene                                | ug/l<br>ug/l  | 150<br>700 | p<br>p | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND                 | ND<br>ND          | ND<br>ND          |
| MTBE                                                    | ug/l<br>ug/l  | 13         | p      | ND                | ND<br>ND          | ND               | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND               | ND                | ND<br>ND                 | ND<br>ND          | ND                |
| Perchlorate                                             | ug/l          | 6          | р      | ND                | 1,10              |                  | 1,10             | ND               |                  | ND               | 1,10             | ND                | 1,10                     | ND                | 1,10              |
|                                                         |               |            |        |                   |                   |                  |                  |                  |                  | -                |                  |                   |                          |                   |                   |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 12 of 21

|                                                         |              |      |          |              |              | - "5"        | 12 01        |                  |              |                  |                  |              |              |             |                    |
|---------------------------------------------------------|--------------|------|----------|--------------|--------------|--------------|--------------|------------------|--------------|------------------|------------------|--------------|--------------|-------------|--------------------|
|                                                         |              |      |          | Long         | Long         | Long         | Long         | Long             | Long         | Long             | Long             | Long         | Long         | Long        | Long               |
| Water Quality Constituents                              |              |      | Type     | Beach #6     | Beach #6     | Beach #6     | Beach #6     | Long<br>Beach #6 | Beach #6     | Long<br>Beach #6 | Long<br>Beach #6 | Beach #6     | Beach #6     | Beach #6    | Long<br>Beach #6   |
| water Quanty Constituents                               | 2            | Г    | LT       | Zone 1       | Zone 1       | Zone 2       | Zone 2       | Zone 3           | Zone 3       | Zone 4           | Zone 4           | Zone 5       | Zone 5       | Zone 6      | Zone 6             |
|                                                         | Units        | MCL  | MCL      | 5/13/2004    | 9/16/2004    | 5/13/2004    | 9/16/2004    | 5/13/2004        | 9/16/2004    | 5/13/2004        | 9/16/2004        | 5/13/2004    | 9/16/2004    | 5/13/2004   | 9/16/2004          |
| Total Dissolved Solid (TDS)                             | mg/l         | 1000 | s        | 690          | 710          | 510          | 690          | 220              | 240          | 260              | 240              | 190          | 190          | 240         | 250                |
| Cation Sum                                              | meq/l        |      |          | 11.9         | 11.9         | 8.69         | 11.5         | 3.88             | 3.92         | 4.36             | 3.91             | 3.34         | 3.15         | 4.36        | 4.22               |
| Anion Sum                                               | meq/l        | 0.2  |          | 11.2         | 11           | 8.19         | 10.8         | 3.62             | 3.55         | 3.95             | 3.63             | 3.1          | 3.03         | 4.03        | 3.9                |
| Iron, Total, ICAP Manganese, Total, ICAP/MS             | mg/l<br>ug/l | 0.3  | S        | 0.097<br>ND  | 0.092        | 0.094        | 0.11         | 0.035<br>ND      | 0.038<br>5.9 | 0.046            | 0.032            | 0.011        | ND<br>9.5    | 0.14<br>110 | 0.16<br><b>110</b> |
| Turbidity                                               | NTU          | 5    | S        | 3.2          | 2.7          | 1.4          | 2.2          | 0.85             | 0.65         | 1                | 1.2              | 0.3          | 0.2          | 0.7         | 0.6                |
| Alkalinity                                              | mg/l         |      | Ť        | 535          | 520          | 384          | 509          | 158              | 152          | 172              | 150              | 120          | 112          | 132         | 124                |
| Boron                                                   | mg/l         |      |          | 1.2          | 1.2          | 0.84         | 1.2          | 0.29             | 0.26         | 0.27             | 0.21             | 0.1          | 0.089        | 0.076       | ND                 |
| Bicarbonate as HCO3,calculated                          | mg/l         |      |          | 650          | 630          | 465          | 616          | 189              | 182          | 208              | 180              | 145          | 135          | 160         | 151                |
| Calcium, Total, ICAP                                    | mg/l         |      |          | 8.4          | 8.2          | 6.1          | 8.5          | 4.8              | 4.8          | 6                | 6                | 13           | 13           | 36          | 35                 |
| Carbonate as CO3, Calculated Hardness (Total, as CaCO3) | mg/l<br>mg/l |      |          | 8.43<br>28   | 12.9<br>27.1 | 9.56<br>19.8 | 12.7<br>27.8 | 9.76<br>13.5     | 7.46<br>13.3 | 3.4<br>17.8      | 7.38<br>17.2     | 3.75         | 4.4<br>36.2  | 1.31        | 1.24<br>108        |
| Chloride                                                | mg/l         | 250  | S        | 17           | 19           | 17.8         | 19           | 15.5             | 17.3         | 17.8             | 18               | 15           | 19           | 38          | 39                 |
| Fluoride                                                | mg/l         | 2    | р        | 0.7          | 0.71         | 0.66         | 0.7          | 0.62             | 0.64         | 0.61             | 0.66             | 0.49         | 0.53         | 0.2         | 0.18               |
| Hydroxide as OH, Calculated                             | mg/l         |      |          | 0.03         | 0.05         | 0.05         | 0.05         | 0.1              | 0.1          | 0.04             | 0.1              | 0.07         | 0.09         | 0.02        | 0.02               |
| Langelier Index - 25 degree                             | None         |      |          | 0.59         | 0.77         | 0.51         | 0.77         | 0.41             | 0.3          | 0.051            | 0.39             | 0.43         | 0.5          | 0.42        | 0.38               |
| Magnesium, Total, ICAP                                  | mg/l         |      |          | 1.7          | 1.6          | 1.1          | 1.6          | 0.36             | 0.31         | 0.69             | 0.55             | 1.1          | 0.92         | 5           | 4.9                |
| Mercury<br>Nitrata N by IC                              | ug/l         | 2    | p        | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND               | ND<br>ND     | ND               | ND               | ND<br>ND     | ND<br>ND     | ND          | ND<br>ND           |
| Nitrate-N by IC<br>Nitrite, Nitrogen by IC              | mg/l<br>mg/l | 10   | p<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND         | ND<br>ND     | ND<br>ND         | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND           |
| Potassium, Total, ICAP                                  | mg/l         | 1    | Р        | 1.9          | 1.9          | 1.5          | 1.9          | ND               | ND<br>ND     | ND<br>ND         | ND               | 1.2          | 1.1          | 2.5         | 2.5                |
| Sodium, Total, ICAP                                     | mg/l         |      |          | 260          | 260          | 190          | 250          | 83               | 84           | 92               | 82               | 59           | 55           | 48          | 46                 |
| Sulfate                                                 | mg/l         | 250  | s        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | 4                | 12           | 11           | 15          | 15                 |
| Surfactants                                             | mg/l         | 0.5  | s        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Total Nitrate, Nitrite-N, CALC                          | mg/l         | 10   | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Total Organic Carbon                                    | mg/l         |      |          | 22.2<br>6.52 | 18.8<br>3.98 | 19<br>2.94   | 18<br>3.9    | 6.7<br>0.476     | 6.4<br>0.577 | 8.6<br>1.66      | 5.6<br>0.571     | 1.3<br>0.728 | 1.5<br>0.539 | 0.7<br>2.54 | ND<br>2.4          |
| Carbon Dioxide General Physicals                        | mg/l         |      |          | 0.32         | 3.98         | 2.94         | 3.9          | 0.476            | 0.377        | 1.00             | 0.371            | 0.728        | 0.339        | 2.34        | 2.4                |
| Apparent Color                                          | ACU          | 15   | S        | 300          | 350          | 300          | 400          | 100              | 125          | 150              | 125              | 20           | 35           | 3           | 3                  |
| Lab pH                                                  | Units        |      |          | 8.3          | 8.5          | 8.5          | 8.5          | 8.9              | 8.8          | 8.4              | 8.8              | 8.6          | 8.7          | 8.1         | 8.1                |
| Odor                                                    | TON          | 3    | s        | 8            | 3            | 8            | 3            | 3                | 2            | 4                | 2                | 4            | 2            | 4           | 2                  |
| pH of CaCO3 saturation(25C)                             | Units        |      |          | 7.708        | 7.732        | 7.992        | 7.726        | 8.487            | 8.504        | 8.349            | 8.412            | 8.17         | 8.201        | 7.685       | 7.722              |
| pH of CaCO3 saturation(60C)                             | Units        |      |          | 7.3<br>1030  | 7.3<br>1010  | 7.5          | 7.3<br>995   | 8<br>345         | 8.1<br>343   | 7.9<br>388       | 353              | 7.7<br>307   | 7.8          | 7.2<br>405  | 7.3                |
| Specific Conductance  Metals                            | umho/cm      |      | L        | 1030         | 1010         | 763          | 993          | 343              | 343          | 388              | 333              | 307          | 301          | 403         | 409                |
| Aluminum, Total, ICAP/MS                                | ug/l         | 1000 | р        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Antimony, Total, ICAP/MS                                | ug/l         | 6    | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Arsenic, Total, ICAP/MS                                 | ug/l         | 50   | р        | 2.9          | 3            | ND           | 1.6          | ND               | ND           | 1.5              | ND               | ND           | ND           | 5.5         | 6                  |
| Barium, Total, ICAP/MS                                  | ug/l         | 1000 | p        | ND           | 8.1          | ND           | 14           | ND               | 4.2          | ND               | 8                | 5.9          | 5.3          | 10          | 11                 |
| Beryllium, Total, ICAP/MS                               | ug/l         | 50   | p        | ND<br>ND     | ND           | ND           | ND<br>ND     | ND<br>ND         | ND<br>ND     | ND               | ND               | ND           | ND           | ND<br>1.9   | ND<br>4.1          |
| Chromium, Total, ICAP/MS<br>Hexavalent Chromium (Cr VI) | ug/l<br>mg/l | 50   | p        | ND<br>ND     | ND           | ND<br>ND     | ND           | ND<br>ND         | ND           | ND<br>ND         | ND               | 2.4<br>ND    | 3.7          | ND          | 4.1                |
| Cadmium, Total, ICAP/MS                                 | ug/l         | 5    | р        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Copper, Total, ICAP/MS                                  | ug/l         | 1000 | S        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Lead, Total, ICAP/MS                                    | ug/l         | 15   |          | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Nickel, Total, ICAP/MS                                  | ug/l         | 100  | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Selenium, Total, ICAP/MS                                | ug/l         | 50   | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Silver, Total, ICAP/MS<br>Thallium, Total, ICAP/MS      | ug/l<br>ug/l | 100  | S        | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND         | ND<br>ND     | ND<br>ND         | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND           |
| Zinc, Total, ICAP/MS                                    | ug/l         | 5000 | p<br>s   | ND           | ND<br>ND     | ND           | 6.1          | ND               | ND<br>ND     | ND<br>ND         | ND               | 27           | ND<br>ND     | ND          | ND<br>ND           |
| Volatile Organic Compounds                              |              |      | <u> </u> |              |              |              |              |                  |              |                  |                  |              |              |             |                    |
| Trichloroethylene (TCE)                                 | ug/l         | 5    | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Tetrachloroethylene (PCE)                               | ug/l         | 5    | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| 1,1-Dichloroethylene                                    | ug/l         | 6    | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| cis-1,2-Dichloroethylene<br>Carbon Tetrachloride        | ug/l         | 0.5  | p        | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND         | ND<br>ND     | ND<br>ND         | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND           |
| 1,1-Dichloroethane                                      | ug/l<br>ug/l | 100  | p<br>p   | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND               | ND<br>ND     | ND<br>ND         | ND               | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND           |
| 1,2-Dichloroethane                                      | ug/l         | 0.5  | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Fluorotrichloromethane-Freon11                          | ug/l         | 150  | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Isopropylbenzene                                        | ug/l         |      |          | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| n-Propylbenzene                                         | ug/l         |      |          | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Dichlorodifluoromethane                                 | ug/l         |      |          | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Benzene<br>m,p-Xylenes                                  | ug/l<br>ug/l | 1750 | p<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND         | ND<br>ND     | ND<br>ND         | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND           |
| Toluene                                                 | ug/l<br>ug/l | 150  | p        | ND           | ND<br>ND     | ND           | ND<br>ND     | ND               | ND<br>ND     | ND<br>ND         | ND               | ND<br>ND     | ND<br>ND     | ND          | ND<br>ND           |
| Ethyl benzene                                           | ug/l         | 700  | р        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| MTBE                                                    | ug/l         | 13   | p        | ND           | ND           | ND           | ND           | ND               | ND           | ND               | ND               | ND           | ND           | ND          | ND                 |
| Perchlorate                                             | ug/l         | 6    | р        | ND           |              | ND           |              | ND               |              | ND               |                  | ND           |              | ND          |                    |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

(p): Primary MCL (s): Secondary MCL (ND): Not Detected

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 13 of 21

| Sclenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      |          |        |        | age 13 |        |        |        |        |        |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Tool Dissolved Solid (TISS)   mgz   1000   s   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   3 | Water Quality Constituents     |         |      | ype      |        |        |        |        |        |        |        |        |        |        |
| Tool Dissolved Solid (TISS)   mgz   1000   s   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   3 | water Quanty Constituents      | its     | =    | CL T     | Zone 1 | Zone 1 | Zone 2 | Zone 2 | Zone 3 | Zone 3 | Zone 4 | Zone 4 | Zone 5 | Zone 5 |
| Cation Some   mergl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Aleans Semo mengel   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ` ,                            |         | 1000 | S        |        |        |        |        |        |        |        |        |        |        |
| Trees   Tree   |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Tarbulady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         | 0.3  | s        |        |        |        |        |        |        |        |        |        |        |
| Alkafuring   mgf     173   170   178   173   179   171   196   188   217   210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Manganese, Total, ICAP/MS      |         | 50   | -        |        | 46     | 64     | 58     | 19     |        | ND     | ND     | ND     | ND     |
| Series   S   |                                | NTU     | 5    | s        |        |        |        |        |        |        |        |        |        |        |
| Bistrahomes BHOOs ackelated mgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Section   Cacheman     |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Carbonates COA), Calciulated  mg1  1, 172  3, 3, 0, 0, 561  1, 0, 0, 687  1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Chloridac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Fibrorisk   mgf   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hardness (Total, as CaCO3)     | mg/l    |      |          | 184    | 182    | 209    | 205    |        | 212    | 303    | 296    | 390    | 390    |
| Hydroxide as Olf, Cilculated   mgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Langelien flock - 25 degree   None   0.71   0.99   0.26   0.35   0.38   0.65   0.36   0.54   0.52   0.56   0.54   0.52   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.58   0.58   0.56   0.56   0.55   0.56   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58    |                                |         | 2    | p        |        |        |        |        |        |        |        |        |        |        |
| Magnesium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Mercary   Quil   2   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Nitrice   Nitrogen     | <u> </u>                       |         | 2    | р        |        |        |        |        |        |        |        |        |        |        |
| Perassium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                              | mg/l    | 10   | p        |        |        |        |        |        |        |        |        |        |        |
| Sodium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         | 1    | р        |        |        |        |        |        |        |        |        |        |        |
| Sulface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Surfactoris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         | 250  | · ·      |        |        |        |        |        |        |        |        |        |        |
| Troid Organic Carbon  mg1  mg1  mg1  mg1  mg1  mg1  mg1  mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         |      | -        |        |        |        |        |        |        |        |        |        |        |
| Carbon Discission   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Nitrate, Nitrite-N, CALC | mg/l    | 10   | р        | ND     | ND     | ND     | ND     | ND     | ND     | 4.97   | 4.3    | 13     | 14     |
| General Physicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | mg/l    |      |          | 3.34   | 1.64   | 10.9   | 8.42   | 8.7    | 4.16   | 15.1   | 9.14   | 16.8   | 12.9   |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | ACII    | 15   |          | 2      | 3      | 3      | 2      | 3      | ND     | 3      | 2      | 5      | 15     |
| Oddor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         | 13   | 8        |        |        |        |        |        |        |        |        |        |        |
| PH of CACO3 saturation(60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                              |         | 3    | s        |        |        |        |        |        |        |        |        |        |        |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pH of CaCO3 saturation(25C)    | Units   |      |          | 7.39   | 7.407  | 7.338  | 7.35   | 7.321  | 7.349  | 7.137  | 7.161  | 6.98   | 6.995  |
| Metals   Aluminum, Total, ICAP/MS   ug/l   1000   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Units   |      |          |        |        |        |        |        |        |        |        |        |        |
| Aluminum, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                              | umho/cm |      |          | 549    | 538    | 581    | 579    | 588    | 579    | 789    | 780    | 1010   | 1010   |
| Antimony, Total, ICAPMS   ug/l   6   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 110/1   | 1000 | l n      | ND     |
| Arsenic, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         |      | -        |        |        |        |        |        |        |        |        |        |        |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         | 50   | <u> </u> |        | ND     | ND     |        |        |        | 1.7    | 1.6    | 1.2    | 1.2    |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | ug/l    |      | p        |        |        |        |        |        |        |        |        |        |        |
| Hexavalent Chromium (Cr VI)   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                              |         |      | -        |        |        |        |        |        |        |        |        |        |        |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         | 50   | p        | ND     | ND     | ND     | ND     | ND     | ND     | 35     | 38     | 420    | 420    |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         | 5    | n        | ND     |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | . /1    | 15   |          | ND     |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel, Total, ICAP/MS         |         | -    | p        |        |        |        |        |        |        |        |        |        |        |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | _       |      | _        |        |        |        |        |        |        |        |        |        |        |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volatile Organic Compounds     | 46,1    | 2000 | J        | 112    | 112    | 112    | 112    | .,     | 112    | 112    | 112    | 112    | 112    |
| 1,1-Dichloroethylene         ug/l         6         p         ND         ND <td>Trichloroethylene (TCE)</td> <td>ug/l</td> <td>5</td> <td>p</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>12</td> <td>13</td> <td>26</td> <td>31</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trichloroethylene (TCE)        | ug/l    | 5    | p        | ND     | ND     | ND     | ND     | ND     | ND     | 12     | 13     | 26     | 31     |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tetrachloroethylene (PCE)      |         |      | p        |        |        |        |        |        |        |        |        |        |        |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                              |         | _    | _        |        |        |        |        |        |        |        |        |        |        |
| 1,1-Dichloroethane         ug/l         100         p         ND         ND <td></td> <td></td> <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |         |      | -        |        |        |        |        |        |        |        |        |        |        |
| 1,2-Dichloroethane   ug/l   0.5   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Fluorotrichloromethane-Freon11   ug/l   150   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                              |         |      |          |        |        |        |        |        |        |        |        |        |        |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         | -    | _        |        |        |        |        |        |        |        |        |        |        |
| Dichlorodifluoromethane   ug/l   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| Benzene   ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         |      |          |        |        |        |        |        |        |        |        |        |        |
| m,p-Xylenes         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |         | 1    |          |        |        |        |        |        |        |        |        |        |        |
| Toluene         ug/l         150         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Ethyl benzene         ug/l         700         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| MTBE ug/l 13 p ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ethyl benzene                  |         |      | _        |        |        |        |        |        |        |        |        |        |        |
| Perchlorate ug/l 6 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         |      | _        |        |        |        |        |        |        |        |        | ND     | ND     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perchlorate                    | ug/l    | 6    | p        |        |        |        |        |        |        |        |        |        |        |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 14 of 21

|                                                      |              |      |          |                    | -                  | age 14            | 01 21             |                    |             |                    |           |           |           |
|------------------------------------------------------|--------------|------|----------|--------------------|--------------------|-------------------|-------------------|--------------------|-------------|--------------------|-----------|-----------|-----------|
|                                                      |              |      |          | Monte-             | Monte-             | Monte-            | Monte-            | Monte-             | Monte-      | Monte-             | Monte-    | Monte-    | Monte-    |
| Water Quality Constituents                           |              |      | ype      | bello #1           | bello #1           | bello #1          | bello #1          | bello #1           | bello #1    | bello #1           | bello #1  | bello #1  | bello #1  |
| water Quanty Constituents                            | s            | ٦    | MCL Type | Zone 1             | Zone 1             | Zone 2            | Zone 2            | Zone 3             | Zone 3      | Zone 4             | Zone 4    | Zone 5    | Zone 5    |
|                                                      | Units        | MCL  | MC       | 5/10/2004          | 9/22/2004          | 5/10/2004         | 9/22/2004         | 5/10/2004          | 9/22/2004   | 5/10/2004          | 9/22/2004 | 5/10/2004 | 9/22/2004 |
| Total Dissolved Solid (TDS)                          | mg/l         | 1000 | s        | 2160               | 2160               | 900               | 900               | 590                | 630         | 540                | 520       | 500       | 510       |
| Cation Sum                                           | meq/l        |      |          | 36.1               | 37                 | 15.1              | 16.1              | 9.62               | 10.4        | 8.53               | 8.59      | 8.1       | 8         |
| Anion Sum                                            | meq/l        | 0.0  |          | 38.1               | 34.7               | 15                | 14.6              | 9.7                | 9.97        | 8.78               | 7.86      | 8.16      | 7.32      |
| Iron, Total, ICAP Manganese, Total, ICAP/MS          | mg/l         | 0.3  | S        | 0.15<br>9.3        | 0.15<br>10         | 0.19              | 0.21<br>37        | 0.17<br><b>170</b> | 0.14<br>140 | 0.085<br><b>88</b> | ND 58     | ND<br>ND  | ND<br>ND  |
| Turbidity                                            | ug/l<br>NTU  | 5    | S        | 0.6                | 4                  | 2.2               | 3.8               | 26                 | 5.6         | 0.3                | 0.6       | 0.15      | 0.1       |
| Alkalinity                                           | mg/l         | -    | j        | 875                | 843                | 565               | 559               | 195                | 214         | 187                | 180       | 168       | 162       |
| Boron                                                | mg/l         |      | П        | 6.3                | 6.8                | 2.3               | 2.4               | 0.35               | 0.53        | 0.17               | 0.23      | 0.23      | 0.23      |
| Bicarbonate as HCO3,calculated                       | mg/l         |      |          | 1060               | 1020               | 687               | 679               | 238                | 260         | 228                | 219       | 205       | 197       |
| Calcium, Total, ICAP                                 | mg/l         |      |          | 13                 | 13                 | 18                | 19                | 89                 | 86          | 100                | 93        | 80        | 79        |
| Carbonate as CO3, Calculated                         | mg/l         |      |          | 10.9               | 13.2               | 5.62              | 8.8               | 0.976              | 1.69        | 1.18               | 1.13      | 0.53      | 0.51      |
| Hardness (Total, as CaCO3) Chloride                  | mg/l         | 250  |          | 57.2<br><b>730</b> | 57.2<br><b>630</b> | 76.2<br>130       | 80<br>120         | 288<br>87          | 277<br>98   | 320<br>75          | 298<br>62 | 266<br>70 | 263       |
| Fluoride                                             | mg/l<br>mg/l | 230  | s<br>p   | 0.47               | 0.45               | 0.32              | 0.31              | 0.19               | 0.18        | 0.19               | 0.24      | 0.4       | 0.39      |
| Hydroxide as OH, Calculated                          | mg/l         | Ě    | P        | 0.03               | 0.03               | 0.02              | 0.03              | 0.01               | 0.02        | 0.01               | 0.01      | 0.007     | 0.007     |
| Langelier Index - 25 degree                          | None         |      | Г        | 0.89               | 0.98               | 0.75              | 0.97              | 0.68               | 0.9         | 0.81               | 0.76      | 0.37      | 0.35      |
| Magnesium, Total, ICAP                               | mg/l         |      |          | 6                  | 6                  | 7.6               | 7.9               | 16                 | 15          | 17                 | 16        | 16        | 16        |
| Mercury                                              | ug/l         | 2    | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Nitrate-N by IC                                      | mg/l         | 10   | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | 4.3       | 4         |
| Nitrite, Nitrogen by IC                              | mg/l         | 1    | p        | ND<br>7.0          | ND<br>8.6          | ND<br>5.6         | ND<br>6.1         | ND<br>4.3          | ND          | ND<br>3.6          | ND<br>3.8 | ND<br>3.3 | ND<br>3.3 |
| Potassium, Total, ICAP<br>Sodium, Total, ICAP        | mg/l<br>mg/l |      |          | 7.9<br>800         | 8.6                | 310               | 330               | 4.3<br>86          | 4.3<br>110  | 3.6<br>47          | 58        | 62        | 61        |
| Sulfate                                              | mg/l         | 250  | s        | ND                 | ND                 | ND                | ND                | 160                | 140         | 140                | 120       | 120       | 100       |
| Surfactants                                          | mg/l         | 0.5  | s        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Total Nitrate, Nitrite-N, CALC                       | mg/l         | 10   | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | 4.3       | 4         |
| Total Organic Carbon                                 | mg/l         |      |          | 38.1               | 28.8               | 23.6              | 21.9              | 1.8                | 2.6         | 1.6                | 1.3       | 0.6       | ND        |
| Carbon Dioxide                                       | mg/l         |      |          | 13.4               | 10.2               | 10.9              | 6.81              | 7.54               | 5.2         | 5.74               | 5.51      | 10.3      | 9.9       |
| General Physicals                                    | ACU          | 1.5  |          | 250                | 250                | 250               | 200               | 15                 | 25          | 10                 | 10        | 2         | 2         |
| Apparent Color  Lab pH                               | Units        | 15   | S        | 8.2                | <b>350</b><br>8.3  | <b>250</b><br>8.1 | <b>300</b><br>8.3 | 7.8                | 25<br>8     | 10<br>7.9          | 7.9       | 7.6       | 7.6       |
| Odor                                                 | TON          | 3    | s        | 8                  | 4                  | 8                 | 2                 | 8                  | 4           | 8                  | 2         | 8         | 2         |
| pH of CaCO3 saturation(25C)                          | Units        |      |          | 7.306              | 7.322              | 7.353             | 7.334             | 7.119              | 7.096       | 7.087              | 7.136     | 7.23      | 7.253     |
| pH of CaCO3 saturation(60C)                          | Units        |      |          | 6.9                | 6.9                | 6.9               | 6.9               | 6.7                | 6.7         | 6.6                | 6.7       | 6.8       | 6.8       |
| Specific Conductance                                 | umho/cm      |      |          | 3610               | 3530               | 1440              | 1410              | 927                | 996         | 846                | 810       | 792       | 766       |
| Metals                                               |              |      |          |                    |                    |                   |                   |                    |             |                    |           |           |           |
| Aluminum, Total, ICAP/MS<br>Antimony, Total, ICAP/MS | ug/l<br>ug/l | 1000 | p<br>p   | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>ND  | ND<br>ND  |
| Arsenic, Total, ICAP/MS                              | ug/l         | 50   | р        | 3.1                | 3.4                | ND<br>ND          | ND                | ND<br>ND           | ND<br>ND    | ND                 | 1.9       | 1.7       | 1.6       |
| Barium, Total, ICAP/MS                               | ug/l         | 1000 | р        | 34                 | 36                 | 23                | 25                | 41                 | 40          | 71                 | 74        | 56        | 58        |
| Beryllium, Total, ICAP/MS                            | ug/l         | 4    | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Chromium, Total, ICAP/MS                             | ug/l         | 50   | р        | 1.7                | 1.8                | 1.6               | ND                | 7.8                | 6.2         | 8.3                | 4.7       | 8.1       | 4.4       |
| Hexavalent Chromium (Cr VI)                          | mg/l         |      |          |                    |                    |                   |                   |                    |             |                    |           |           |           |
| Cannor, Total, ICAP/MS                               | ug/l         | 5    | p        | ND                 | ND                 | ND<br>ND          | ND                | ND<br>ND           | ND<br>ND    | ND                 | ND<br>ND  | ND<br>ND  | ND        |
| Copper, Total, ICAP/MS                               | ug/l         | 1000 | S        | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>ND  | ND<br>ND  |
| Lead, Total, ICAP/MS<br>Nickel, Total, ICAP/MS       | ug/l<br>ug/l | 100  | р        | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>5            | 5.2       | ND<br>ND  | ND<br>ND  |
| Selenium, Total, ICAP/MS                             | ug/l         | 50   | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Silver, Total, ICAP/MS                               | ug/l         | 100  | s        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Thallium, Total, ICAP/MS                             | ug/l         | 2    | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Zinc, Total, ICAP/MS                                 | ug/l         | 5000 | S        | 5.3                | 6.2                | ND                | ND                | ND                 | ND          | ND                 | 15        | ND        | ND        |
| Volatile Organic Compounds Trichloroethylene (TCE)   | 110/1        | 5    | _ n      | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ViD       | ND        | ND        |
| Tetrachloroethylene (PCE)                            | ug/l<br>ug/l | 5    | p<br>p   | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>1.5 | 0.9       |
| 1,1-Dichloroethylene                                 | ug/l         | 6    | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| cis-1,2-Dichloroethylene                             | ug/l         | 6    | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Carbon Tetrachloride                                 | ug/l         | 0.5  | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| 1,1-Dichloroethane                                   | ug/l         | 100  | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| 1,2-Dichloroethane                                   | ug/l         | 0.5  | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Fluorotrichloromethane-Freon11                       | ug/l         | 150  | p        | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>ND  | ND<br>ND  |
| Isopropylbenzene<br>n-Propylbenzene                  | ug/l<br>ug/l |      |          | ND<br>ND           | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>ND  | ND<br>ND  |
| Dichlorodifluoromethane                              | ug/l         |      |          | ND<br>ND           | ND                 | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND    | ND<br>ND           | ND<br>ND  | ND<br>ND  | ND        |
| Benzene                                              | ug/l         | 1    | р        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| m,p-Xylenes                                          | ug/l         | 1750 | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Toluene                                              | ug/l         | 150  | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Ethyl benzene                                        | ug/l         | 700  | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| MTBE                                                 | ug/l         | 13   | p        | ND                 | ND                 | ND                | ND                | ND                 | ND          | ND                 | ND        | ND        | ND        |
| Perchlorate                                          | ug/l         | 6    | p        |                    |                    |                   |                   |                    |             |                    |           |           |           |

# TABLE 4.2 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 15 of 21

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |             |      | a    |            |              |                                       |              |            |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|------|------|------------|--------------|---------------------------------------|--------------|------------|------------|
| Content   Cont | Water Quality Constituents     |             |      | Type | Norwalk #1 | Norwalk #1   | Norwalk #1                            | Norwalk #1   | Norwalk #1 | Norwalk #1 |
| Treat Desired Schief (TDS)   mg  100   s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | nits        | CL   | CL   |            |              | +                                     | t            |            | <b>†</b>   |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Dissolved Solid (TDS)    | _           |      | -    |            |              |                                       |              |            |            |
| Names name   more]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cation Sum                     | <u> </u>    | 1000 | 3    |            |              |                                       | ļ            |            |            |
| State   Stat | Anion Sum                      | <u> </u>    |      |      | 7.72       | 7.61         | 4.99                                  | 4.87         | 4.36       | 3.86       |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iron, Total, ICAP              | _           | _    | -    |            | <u> </u>     |                                       | <u> </u>     |            |            |
| Nikelfainy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |             |      | -    |            |              |                                       | ļ            |            |            |
| Source   S | <u> </u>                       | -           | 3    | S    |            | <u> </u>     | +                                     | <del></del>  |            |            |
| Searbonnes as HCO3, Calculated   mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Boron                          |             |      | П    |            |              |                                       |              |            |            |
| Same Scot   Same | Bicarbonate as HCO3,calculated |             |      |      | 338        | 335          | 200                                   | 202          | 158        |            |
| Informers (Tord.) as CaCO3)   mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcium, Total, ICAP           |             |      | Ш    |            |              |                                       |              |            |            |
| Table   Tabl |                                |             |      | Н    |            |              | -                                     |              |            |            |
| Page    | Chloride                       |             | 250  | S    |            |              |                                       |              |            |            |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluoride                       | _           | _    | -    |            |              | 0.56                                  |              |            | 0.25       |
| Augustianing, Teal, ICAP   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hydroxide as OH, Calculated    | <u> </u>    |      |      |            |              |                                       |              |            |            |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | _           |      | Н    |            |              |                                       |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                              |             | 2    | n    | * **       |              | · · · · · · · · · · · · · · · · · · · | <del></del>  |            |            |
| Strike, Nitrogen by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nitrate-N by IC                | <u> </u>    | -    | -    |            |              |                                       | <del> </del> |            |            |
| Sedimp, Total, ICAP   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nitrite, Nitrogen by IC        |             |      | _    |            |              |                                       |              |            |            |
| Stafface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potassium, Total, ICAP         | <u> </u>    |      |      |            |              | -                                     | <del> </del> |            |            |
| Surfaceants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sodium, Total, ICAP            |             | 250  | Н    |            |              |                                       | <u> </u>     |            |            |
| Total Nitrate, Nitrite, N., CALC   mg/l   0   0   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |             | _    |      |            |              | <u> </u>                              | ļ            |            |            |
| Total Crapmaic Carbon   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | <u> </u>    | -    | -    |            |              |                                       | <u> </u>     |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Organic Carbon           | <u> </u>    |      | ı    |            |              | -                                     |              |            |            |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon Dioxide                 | mg/l        |      |      | 4.27       | 4.23         | 1.26                                  | 1.01         | 1.58       | 0.678      |
| Ash pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Physicals              | LACIT       | 1.5  |      |            | 1 20         | 1 25                                  | 1 25         |            |            |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **                             |             | 15   | S    |            |              |                                       |              |            |            |
| MITER CACO3 saturation(60C)   Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Odor                           |             | 3    | S    |            |              |                                       |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pH of CaCO3 saturation(25C)    | Units       |      | П    | 7.802      | 7.841        | 8.22                                  | 8.226        | 7.968      | 8.014      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pH of CaCO3 saturation(60C)    | Units       |      |      |            |              | _                                     |              |            |            |
| Muminum, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                              | umho/cm     |      | Ш    | 815        | 785          | 526                                   | 520          | 463        | 398        |
| Mattimony, Total, ICAP/MS   ug/l   6   p   ND   ND   ND   ND   ND   ND   NSenic, Total, ICAP/MS   ug/l   50   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 110/1       | 1000 | n    | ND         | ND           | ND                                    | ND           | ND         | ND         |
| Sarium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antimony, Total, ICAP/MS       | <u> </u>    | _    | -    |            |              | -                                     | <del></del>  |            |            |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic, Total, ICAP/MS        | ug/l        |      | p    |            |              |                                       |              |            |            |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barium, Total, ICAP/MS         | <del></del> |      | -    |            |              | <del></del>                           | <u> </u>     |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | <u> </u>    |      | -    |            | ļ            |                                       | Ļ            |            |            |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |             | 30   | Р    |            |              |                                       |              |            |            |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium, Total, ICAP/MS        |             | 5    | р    |            |              |                                       |              | · ·        |            |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Copper, Total, ICAP/MS         |             |      | S    |            |              |                                       |              |            |            |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead, Total, ICAP/MS           |             |      | Ш    |            |              | <del></del>                           | ļ            |            |            |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |             |      | -    |            |              |                                       | <b>_</b>     |            | -          |
| Challium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silver, Total, ICAP/MS         |             |      | + -  |            |              |                                       |              |            |            |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thallium, Total, ICAP/MS       |             | 2    | _    | ND         | ND           | ND                                    | ND           |            | ND         |
| Frichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc, Total, ICAP/MS           | ug/l        | 5000 | S    | ND         | ND           | ND                                    | ND           | ND         | ND         |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                       | /1          | -    | I I  | ND         | NID          | ND.                                   | NID.         | ND.        | NID        |
| 1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • •                          |             |      | -    |            |              | <del></del>                           |              |            |            |
| Section   Sect | 1,1-Dichloroethylene           |             |      | -    |            |              |                                       |              |            |            |
| 1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cis-1,2-Dichloroethylene       |             | 6    | -    | ND         | ND           |                                       |              |            | ND         |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbon Tetrachloride           | <u> </u>    |      |      |            |              |                                       |              |            |            |
| Fluorotrichloromethane-Freon  1   ug/l   150   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                              |             | _    | -    |            | <del> </del> |                                       |              |            |            |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | <u> </u>    | _    | -    |            |              |                                       |              |            |            |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Isopropylbenzene               | +           | 130  | Р    |            |              |                                       |              |            |            |
| Senzene   Ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n-Propylbenzene                |             |      |      | ND         | ND           | ND                                    |              | ND         |            |
| n.pXylenes         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dichlorodifluoromethane        |             |      | П    |            |              |                                       |              |            |            |
| Toluene         ug/l         150         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzene                        | _           | _    | -    |            |              |                                       |              |            |            |
| Ethyl benzene         ug/l         700         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | _           | +    | -    |            |              | -                                     |              |            |            |
| MTBE ug/l 13 p ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ethyl benzene                  | <u> </u>    |      | _    |            |              |                                       | <del> </del> |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTBE                           | _           |      | _    |            |              |                                       |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Perchlorate                    | ug/l        | 6    | p    | ND         | ND           | ND                                    | ND           | ND         | ND         |

# TABLE 4.2 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 16 of 21

| Water Quality Constituents                        |               |             | ype      | Pico #1      | Pico #1      | Pico #1             | Pico #1             | Pico #1      | Pico #1      |
|---------------------------------------------------|---------------|-------------|----------|--------------|--------------|---------------------|---------------------|--------------|--------------|
| water Quanty Constituents                         | ts            | یا ا        | MCL Type | Zone 2       | Zone 2       | Zone 3              | Zone 3              | Zone 4       | Zone 4       |
|                                                   | Units         | MCL         | MC       | 5/25/2004    | 9/30/2004    | 5/25/2004           | 9/30/2004           | 5/25/2004    | 9/30/2004    |
| Total Dissolved Solid (TDS)                       | mg/l          | 1000        | s        | 330          | 340          | 660                 | 620                 | 640          | 620          |
| Cation Sum                                        | meq/l         |             | Ш        | 5.42         | 5.7          | 9.94                | 10.6                | 10.2         | 10.2         |
| Anion Sum<br>Iron, Total, ICAP                    | meq/l<br>mg/l | 0.3         |          | 5.16<br>0.26 | 5.44<br>0.27 | 10.5<br><b>0.41</b> | 8.21<br><b>0.41</b> | 10.2<br>ND   | 10<br>ND     |
| Manganese, Total, ICAP/MS                         | ug/l          | 50          | S        | 34           | 29           | 23                  | 20                  | 2.4          | ND<br>ND     |
| Turbidity                                         | NTU           | 5           | s        | 1.6          | 1.4          | 3.7                 | 2.6                 | 0.3          | 0.15         |
| Alkalinity                                        | mg/l          |             |          | 154          | 162          | 167                 | 179                 | 186          | 186          |
| Boron                                             | mg/l          |             | Ш        | 0.055        | 0.086        | 0.21                | 0.21                | 0.18         | 0.19         |
| Bicarbonate as HCO3,calculated                    | mg/l          |             |          | 187          | 197          | 204                 | 218                 | 227          | 227          |
| Calcium, Total, ICAP Carbonate as CO3, Calculated | mg/l<br>mg/l  |             |          | 68<br>0.965  | 71<br>0.808  | 100<br>0.419        | 120<br>0.283        | 110<br>0.587 | 110<br>0.466 |
| Hardness (Total, as CaCO3)                        | mg/l          |             | П        | 219          | 231          | 332                 | 386                 | 361          | 361          |
| Chloride                                          | mg/l          | 250         | s        | 20           | 22           | 120                 | 75                  | 92           | 96           |
| Fluoride                                          | mg/l          | 2           | р        | 0.3          | 0.29         | 0.24                | 0.25                | 0.28         | 0.27         |
| Hydroxide as OH, Calculated                       | mg/l          |             |          | 0.01         | 0.01         | 0.005               | 0.003               | 0.007        | 0.005        |
| Langelier Index - 25 degree                       | None          |             |          | 0.56         | 0.5          | 0.37                | 0.27                | 0.55         | 0.45         |
| Magnesium, Total, ICAP Mercury                    | mg/l<br>ug/l  | 2           | р        | ND           | 13<br>ND     | 20<br>ND            | 21<br>ND            | 21<br>ND     | 21<br>ND     |
| Nitrate-N by IC                                   | mg/l          | 10          | р        | ND           | ND<br>ND     | ND                  | ND                  | 1.1          | 0.92         |
| Nitrite, Nitrogen by IC                           | mg/l          | 1           | p        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Potassium, Total, ICAP                            | mg/l          |             |          | 2.8          | 3            | 4.7                 | 4.8                 | 4.9          | 5            |
| Sodium, Total, ICAP                               | mg/l          |             | Ш        | 22           | 23           | 73                  | 64                  | 66           | 65           |
| Sulfate<br>Surfactants                            | mg/l          | 250<br>0.5  | S        | 72<br>ND     | 75<br>ND     | 180<br>ND           | 120<br>ND           | 180<br>ND    | 170<br>ND    |
| Total Nitrate, Nitrite-N, CALC                    | mg/l<br>mg/l  | 10          | s<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | 1.1          | 0.92         |
| Total Organic Carbon                              | mg/l          | 10          | Р        | ND           | ND           | 0.6                 | 0.6                 | 0.7          | 0.7          |
| Carbon Dioxide                                    | mg/l          |             |          | 4.71         | 6.24         | 12.9                | 21.9                | 11.4         | 14.4         |
| General Physicals                                 |               |             |          |              |              |                     |                     |              |              |
| Apparent Color                                    | ACU           | 15          | S        | 3            | 5            | 5                   | 10                  | 3            | ND           |
| Lab pH<br>Odor                                    | Units<br>TON  | 3           | S        | 7.9          | 7.8          | 7.5                 | 7.3                 | 7.6          | 7.5          |
| pH of CaCO3 saturation(25C)                       | Units         | 3           | 8        | 7.341        | 7.299        | 7.135               | 7.027               | 7.048        | 7.048        |
| pH of CaCO3 saturation(60C)                       | Units         |             |          | 6.9          | 6.9          | 6.7                 | 6.6                 | 6.6          | 6.6          |
| Specific Conductance                              | umho/cm       |             |          | 516          | 532          | 993                 | 1010                | 961          | 939          |
| Metals                                            |               |             |          |              |              |                     |                     | •            |              |
| Aluminum, Total, ICAP/MS                          | ug/l          | 1000        | р        | ND           | ND           | ND                  | ND                  | ND<br>ND     | ND<br>ND     |
| Antimony, Total, ICAP/MS Arsenic, Total, ICAP/MS  | ug/l<br>ug/l  | 50          | p<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | 2.7          | 2.8          |
| Barium, Total, ICAP/MS                            | ug/l          | 1000        | p        | 79           | 72           | 63                  | 57                  | 65           | 59           |
| Beryllium, Total, ICAP/MS                         | ug/l          | 4           | p        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Chromium, Total, ICAP/MS                          | ug/l          | 50          | p        | ND           | 2.9          | ND                  | 3.8                 | ND           | ND           |
| Hexavalent Chromium (Cr VI)                       | mg/l          |             |          | 1775         | ) ID         | N.D.                | 3370                | 2175         | ) In         |
| Cadmium, Total, ICAP/MS Copper, Total, ICAP/MS    | ug/l<br>ug/l  | 1000        | p<br>s   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | ND<br>ND     | ND<br>ND     |
| Lead, Total, ICAP/MS                              | ug/l          | 15          | 3        | ND<br>ND     | ND<br>ND     | ND                  | ND<br>ND            | ND<br>ND     | ND<br>ND     |
| Nickel, Total, ICAP/MS                            | ug/l          | 100         | р        | ND           | ND           | ND                  | 5.3                 | ND           | 5            |
| Selenium, Total, ICAP/MS                          | ug/l          | 50          | р        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Silver, Total, ICAP/MS                            | ug/l          | 100         | s        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Thallium, Total, ICAP/MS<br>Zinc, Total, ICAP/MS  | ug/l<br>ug/l  | 5000        | p<br>s   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | ND<br>ND     | ND<br>ND     |
| Volatile Organic Compounds                        | ug/1          | 3000        | S        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Trichloroethylene (TCE)                           | ug/l          | 5           | р        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Tetrachloroethylene (PCE)                         | ug/l          | 5           | p        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| 1,1-Dichloroethylene                              | ug/l          | 6           | р        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| cis-1,2-Dichloroethylene                          | ug/l          | 6           | р        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Carbon Tetrachloride                              | ug/l          | 0.5         | p        | ND           | ND           | ND<br>ND            | ND<br>ND            | ND           | ND<br>ND     |
| 1,1-Dichloroethane<br>1,2-Dichloroethane          | ug/l<br>ug/l  | 0.5         | p<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | ND<br>ND     | ND<br>ND     |
| Fluorotrichloromethane-Freon11                    | ug/l          | 150         | р        | ND           | ND           | ND                  | ND                  | ND           | ND<br>ND     |
| Isopropylbenzene                                  | ug/l          |             | Ĺ        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| n-Propylbenzene                                   | ug/l          |             |          | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Dichlorodifluoromethane                           | ug/l          |             |          | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Benzene                                           | ug/l          | 1750        | p        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| m,p-Xylenes<br>Toluene                            | ug/l<br>ug/l  | 1750<br>150 | p<br>p   | ND<br>ND     | ND<br>ND     | ND<br>ND            | ND<br>ND            | ND<br>ND     | ND<br>ND     |
| Ethyl benzene                                     | ug/l          | 700         | р        | ND           | ND<br>ND     | ND                  | ND                  | ND           | ND<br>ND     |
| MTBE                                              | ug/l          | 13          | р        | ND           | ND           | ND                  | ND                  | ND           | ND           |
| Perchlorate                                       | ug/l          | 6           | p        |              |              |                     |                     |              |              |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 17 of 21

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|------|-----|---------|---------|-----------|-----------|-----------|-------------|-----------|---------|-----------|-----------|-------------|-------------|
| Tend Tripological Graphs   Part   P  |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Tend Tripological Graphs   Part   P  | Water Quality Constituents     |         |      | ype | Pico #2 | Pico #2 | Pico #2   | Pico #2   | Pico #2   | Pico #2     | Pico #2   | Pico #2 | Pico #2   | Pico #2   | Pico #2     | Pico #2     |
| Califor Dissolved Solid (TPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | water Quanty Constituents      | 2       | ٦    | LT  | Zone 1  | Zone 1  | Zone 2    | Zone 2    | Zone 3    | Zone 3      | Zone 4    | Zone 4  | Zone 5    | Zone 5    | Zone 6      | Zone 6      |
| Troid Dissolved Solid (TIDS)   mg/l   100   s   mg/l   00   s   mg/l   00   s   mg/l   00   s   mg/l   01   s |                                | Uni     | MC   | MC  |         |         | 4/22/2004 | 9/23/2004 | 4/22/2004 | 9/23/2004   | 4/22/2004 |         | 4/22/2004 | 9/23/2004 | 4/22/2004   | 9/23/2004   |
| Auton Senior   more)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Dissolved Solid (TDS)    |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Teach Float   CAP   Management, Total   CAP   CA  | Cation Sum                     | meq/l   |      |     | 8.38    | 8.33    | 10.1      | 10.1      | 8.49      | 9.03        | 8.55      | 8.74    | 8.19      | 8.43      | 7.59        | 4.47        |
| Margamen Tanal, ICAPANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anion Sum                      | meq/l   |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Turbiday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         |      | -   |         |         |           |           |           |             |           |         |           |           |             |             |
| Akadaminy   mgr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |         |      | _   |         |         |           |           |           |             |           |         |           |           |             |             |
| Bares   Bare  |                                |         | 5    | S   |         |         |           |           |           |             |           |         |           |           |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Calcium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Carbonnes ex CO3, Calculated   mgr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Hendresc (Total, as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Flancisch   mgrl   2   p   0.27   0.22   0.27   0.23   0.32   0.3   0.3   0.3   0.9   0.07   0.005   0.05   0.09   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0  | Hardness (Total, as CaCO3)     |         |      |     | 357     | 357     | 428       | 428       | 336       | 361         | 252       | 257     | 236       | 241       | 193         | 93.7        |
| Hydroxide as OH, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloride                       | mg/l    | 250  | s   | 41      | 42      | 68        | 67        | 59        | 60          | 94        | 103     | 98        | 108       | 92          | 39.6        |
| Jangelien florik as 25 degree   None     0,78   0,78   0,8   0,69   0,62   0,95   0,28   0,28   0,11   0,52   -0,11   0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         | 2    | p   |         |         |           |           |           |             |           |         |           |           |             |             |
| Magnesium, Tond, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                              |         |      |     |         |         |           |           |           |             |           |         |           |           |             | -           |
| Moreary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| National Nation   National N  |                                |         | 2    | -   |         |         |           |           |           |             |           |         |           |           |             |             |
| Ninte, Ninte, Ninte, page   CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              |         |      | _   |         |         |           |           |           |             |           |         |           |           |             |             |
| Polassiann, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Sedium   Total   CAP   mg   mg   mg   mg   mg   mg   mg   m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |         |      | Р   |         |         |           |           |           |             |           |         |           |           | <del></del> | <del></del> |
| Salfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             | -           |
| Total Name; Nitrites N, CALC   mg/l   mg/l  | Sulfate                        |         | 250  | s   |         |         |           |           |           |             |           |         |           |           | <del></del> | 56.5        |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surfactants                    | mg/l    | 0.5  | s   | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Carbon Dixide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Nitrate, Nitrite-N, CALC | mg/l    | 10   | p   |         |         |           |           |           |             |           | 2.9     |           |           |             |             |
| Acquaint   |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | mg/l    |      |     | 7.73    | 7.61    | 10.8      | 13.2      | 9.22      | 4.5         | 9.19      | 8.94    | 10.9      | 4.33      | 12.7        | 3.39        |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .                            | ACII    | 1.5  |     | ND      | 2       | ND        | 2         | ND        | 1 2         | 1 2       | 2       | ND        | 2         | 1 2         |             |
| Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         | 15   | S   |         |         |           |           |           |             |           |         |           |           |             |             |
| PH of CaCO3 saturation(25C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | _       | 3    | c   |         |         |           |           |           |             | 1.0       |         |           |           | 1.4         |             |
| PILOT CACO 3 saturation (60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |         | 3    | 3   | -       |         | •         |           |           |             | 7.319     |         | •         |           | 7.533       |             |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | _       |      |     |         |         |           |           |           |             |           |         |           |           |             | <u> </u>    |
| Adminimum, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Specific Conductance           | umho/cm |      | П   | 789     | 790     |           | 908       | 821       | 827         | 845       | 864     | 830       | 837       | 781         | 454         |
| Antimony, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metals                         |         |      |     |         |         |           |           |           | •           | •         |         |           |           | •           | •           |
| Assenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         |      | -   |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| Barium, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |         |      | _   |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         | _    | -   |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| Hexavalent Chromium (Cr VI)   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             | -           |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |         | 30   | Р   | 7.0     | 0.0     | 3.0       | -         | 7.3       | 3.0         | 3         | 5.5     |           | 3.7       | -           |             |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         | 5    | р   | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |      | _   |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead, Total, ICAP/MS           | ug/l    | 15   |     | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |      |     |         |         |           |           |           | <del></del> |           |         |           |           |             | ND          |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | _       |      | _   |         |         |           |           |           |             |           |         |           |           | <del></del> | <u> </u>    |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         | _    | _   |         |         |           |           |           |             |           |         |           |           | -           |             |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | _       |      | _   |         |         |           |           |           |             |           |         |           |           |             |             |
| Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | ug/I    | 3000 | S   | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | 110/1   | 5    | n   | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         | _    |     |         |         |           |           |           |             |           |         |           |           |             | <del></del> |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         | _    |     |         |         |           |           |           |             |           |         |           |           |             |             |
| 1,1-Dichloroethane         ug/l         100         p         ND         ND <td>Carbon Tetrachloride</td> <td></td> <td>0.5</td> <td></td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon Tetrachloride           |         | 0.5  |     | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Fluorotrichloromethane-Freon11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         | 100  |     | ND      | ND      | ND        | ND        | ND        | ND          | ND        | ND      | ND        | ND        | ND          | ND          |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |         |      |     |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| n-Propylbenzene         ug/l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |         | 150  | p   |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 17                           |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| Benzene   ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                             |         |      |     |         |         |           |           |           |             |           |         |           |           | <del></del> | <del></del> |
| m,p-Xylenes         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         | 1    | -   |         |         |           |           |           | <del></del> |           |         |           |           |             |             |
| Toluene   ug/l   150   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | _       |      | _   |         |         |           |           |           |             |           |         |           |           |             |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                             |         |      |     |         |         |           |           |           |             |           |         |           |           |             |             |
| MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      |     |         |         |           |           |           |             |           |         |           |           | <del></del> |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                              |         |      | _   |         |         |           |           |           |             |           |         |           |           |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Perchlorate                    | ug/l    | 6    | p   |         |         |           |           |           |             |           |         |           |           |             |             |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 18 of 21

|                                                            |              |      |        |               |            | - "5"         | 2 10 01       |              |              |              |              |              |             |              |              |
|------------------------------------------------------------|--------------|------|--------|---------------|------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|
|                                                            |              |      |        | Rio           | Rio        | Rio           | Rio           | Rio          | Rio          | Rio          | Rio          | Rio          | Rio         | Rio          | Rio          |
| Water Quality Constituents                                 |              |      | Type   | Hondo #1      | Hondo #1   | Hondo #1      | Hondo #1      | Hondo #1     | Hondo #1     | Hondo #1     | Hondo #1     | Hondo #1     | Hondo #1    | Hondo #1     | Hondo #1     |
| water Quanty Constituents                                  | t            | _ı   | LT     | Zone 1        | Zone 1     | Zone 2        | Zone 2        | Zone 3       | Zone 3       | Zone 4       | Zone 4       | Zone 5       | Zone 5      | Zone 6       | Zone 6       |
|                                                            | Units        | MCL  | MCL    | 4/22/2004     | 9/22/2004  | 4/22/2004     | 9/22/2004     | 4/22/2004    | 9/22/2004    | 4/22/2004    | 9/22/2004    | 4/22/2004    | 9/22/2004   | 4/22/2004    | 9/22/2004    |
| Total Dissolved Solid (TDS)                                | mg/l         | 1000 | s      | 270           | 270        | 490           | 490           | 440          | 460          | 450          | 470          | 420          | 420         | 410          | 430          |
| Cation Sum                                                 | meq/l        |      |        | 4.57          | 4.51       | 7.71          | 7.7           | 7.28         | 7.58         | 7.31         | 7.45         | 6.81         | 6.85        | 6.66         | 6.85         |
| Anion Sum                                                  | meq/l        | 0.3  | -      | 4.26<br>0.013 | 4.23<br>ND | 7.69<br>0.075 | 7.24<br>0.068 | 6.95<br>ND   | 6.61<br>ND   | 6.99<br>ND   | 6.77<br>ND   | 6.65<br>ND   | 6.32<br>ND  | 6.48<br>ND   | 6.23<br>ND   |
| Iron, Total, ICAP Manganese, Total, ICAP/MS                | mg/l<br>ug/l | 50   | S      | 36            | 20         | 41            | 42            | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND     | ND<br>ND     |
| Turbidity                                                  | NTU          | 5    | s      | 0.3           | 0.4        | 0.35          | 0.6           | 0.25         | 0.4          | 0.8          | 1.2          | 0.5          | 0.9         | 2.1          | 1.2          |
| Alkalinity                                                 | mg/l         |      |        | 143           | 139        | 165           | 160           | 157          | 153          | 140          | 132          | 121          | 116         | 116          | 114          |
| Boron                                                      | mg/l         |      |        | 0.067         | 0.076      | 0.057         | 0.053         | 0.16         | 0.16         | 0.19         | 0.39         | 0.17         | 0.16        | 0.2          | 0.16         |
| Bicarbonate as HCO3,calculated                             | mg/l         |      |        | 174           | 169        | 201           | 195           | 191          | 186          | 171          | 161          | 147          | 141         | 141          | 139          |
| Calcium, Total, ICAP                                       | mg/l         |      |        | 41            | 41         | 100           | 100           | 79           | 84           | 68           | 69           | 65           | 65          | 56           | 65           |
| Carbonate as CO3, Calculated<br>Hardness (Total, as CaCO3) | mg/l<br>mg/l |      |        | 1.42          | 1.74       | 0.824<br>324  | 0.8<br>324    | 0.783<br>259 | 0.763<br>272 | 0.557<br>223 | 0.417<br>226 | 0.302<br>220 | 0.29<br>220 | 0.183<br>206 | 0.286<br>220 |
| Chloride                                                   | mg/l         | 250  | s      | 16            | 17         | 52            | 47            | 55           | 47           | 67           | 65           | 72           | 68          | 78           | 67           |
| Fluoride                                                   | mg/l         | 2    | р      | 0.25          | 0.23       | 0.21          | 0.19          | 0.3          | 0.3          | 0.39         | 0.38         | 0.32         | 0.3         | 0.27         | 0.3          |
| Hydroxide as OH, Calculated                                | mg/l         |      | Ė      | 0.02          | 0.03       | 0.01          | 0.01          | 0.01         | 0.01         | 0.009        | 0.007        | 0.005        | 0.005       | 0.003        | 0.005        |
| Langelier Index - 25 degree                                | None         |      |        | 0.51          | 0.6        | 0.66          | 0.64          | 0.53         | 0.55         | 0.32         | 0.2          | 0.035        | 0.017       | -0.2         | 0.011        |
| Magnesium, Total, ICAP                                     | mg/l         |      |        | 8.5           | 8.4        | 18            | 18            | 15           | 15           | 13           | 13           | 14           | 14          | 16           | 14           |
| Mercury                                                    | ug/l         | 2    | p      | ND            | ND         | ND            | ND            | ND<br>2.2    | ND           | ND<br>2.0    | ND           | ND<br>2.0    | ND          | ND<br>2.4    | ND           |
| Nitrate-N by IC<br>Nitrite, Nitrogen by IC                 | mg/l         | 10   | p      | ND<br>ND      | ND<br>ND   | ND<br>ND      | ND<br>ND      | 2.3<br>ND    | 2.1<br>ND    | 2.8<br>ND    | 2.7<br>ND    | 2.8<br>ND    | 2.7<br>ND   | 2.4<br>ND    | 2.6<br>ND    |
| Potassium, Total, ICAP                                     | mg/l<br>mg/l | 1    | p      | 3             | 2.9        | 3.7           | 3.6           | 3.7          | 3.9          | 3.9          | ND 4         | 3.9          | 3.8         | 4.2          | 3.9          |
| Sodium, Total, ICAP                                        | mg/l         |      |        | 40            | 39         | 26            | 26            | 46           | 47           | 63           | 65           | 53           | 54          | 56           | 54           |
| Sulfate                                                    | mg/l         | 250  | s      | 45            | 46         | 140           | 130           | 100          | 99           | 100          | 100          | 95           | 90          | 85           | 89           |
| Surfactants                                                | mg/l         | 0.5  | s      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Total Nitrate, Nitrite-N, CALC                             | mg/l         | 10   | p      | ND            | ND         | ND            | ND            | 2.3          | 2.1          | 2.8          | 2.7          | 2.8          | 2.7         | 2.4          | 2.6          |
| Total Organic Carbon                                       | mg/l         |      |        | ND<br>2.76    | ND         | ND            | ND            | ND           | ND           | 0.6          | 0.7          | ND           | ND          | 0.5          | ND           |
| Carbon Dioxide General Physicals                           | mg/l         |      |        | 2.76          | 2.13       | 6.37          | 6.18          | 6.05         | 5.9          | 6.82         | 8.09         | 9.3          | 8.92        | 14.1         | 8.79         |
| Apparent Color                                             | ACU          | 15   | S      | ND            | 3          | ND            | 3             | 3            | 3            | ND           | ND           | ND           | 3           | 3            | 3            |
| Lab pH                                                     | Units        | 13   | 3      | 8.1           | 8.2        | 7.8           | 7.8           | 7.8          | 7.8          | 7.7          | 7.6          | 7.5          | 7.5         | 7.3          | 7.5          |
| Odor                                                       | TON          | 3    | s      | 1             | 2          | 1             | 1             | 1            | 1            | 1            | 2            | 1            | 2           | 1            | 2            |
| pH of CaCO3 saturation(25C)                                | Units        |      |        | 7.592         | 7.604      | 7.142         | 7.155         | 7.266        | 7.251        | 7.379        | 7.399        | 7.465        | 7.483       | 7.548        | 7.489        |
| pH of CaCO3 saturation(60C)                                | Units        |      |        | 7.1           | 7.2        | 6.7           | 6.7           | 6.8          | 6.8          | 6.9          | 7            | 7            | 7           | 7.1          | 7            |
| Specific Conductance                                       | umho/cm      |      |        | 440           | 425        | 742           | 730           | 715          | 701          | 736          | 724          | 694          | 679         | 682          | 680          |
| Metals Aluminum, Total, ICAP/MS                            | ug/l         | 1000 | р      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Antimony, Total, ICAP/MS                                   | ug/l         | 6    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Arsenic, Total, ICAP/MS                                    | ug/l         | 50   | p      | ND            | ND         | 1             | ND            | 2.4          | 2.2          | 2.8          | 2.7          | 1.9          | 1.6         | 1.3          | 1.5          |
| Barium, Total, ICAP/MS                                     | ug/l         | 1000 | p      | 18            | 16         | 52            | 55            | 110          | 120          | 55           | 59           | 55           | 58          | 64           | 57           |
| Beryllium, Total, ICAP/MS                                  | ug/l         | 4    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Chromium, Total, ICAP/MS                                   | ug/l         | 50   | p      | 2             | 3.9        | 2.5           | 5             | 3.1          | 4.8          | 2.5          | 3.8          | 2.1          | 3.3         | 2.2          | 3.3          |
| Hexavalent Chromium (Cr VI) Cadmium, Total, ICAP/MS        | mg/l         | 5    | -      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Copper, Total, ICAP/MS                                     | ug/l<br>ug/l | 1000 | p<br>s | ND            | ND<br>ND   | ND            | ND<br>ND      | ND           | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND    | ND           | ND<br>ND     |
| Lead, Total, ICAP/MS                                       | ug/l         | 15   | 3      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Nickel, Total, ICAP/MS                                     | ug/l         | 100  | р      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Selenium, Total, ICAP/MS                                   | ug/l         | 50   | р      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Silver, Total, ICAP/MS                                     | ug/l         | 100  | s      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Thallium, Total, ICAP/MS                                   | ug/l         | 2    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Zinc, Total, ICAP/MS  Volatile Organic Compounds           | ug/l         | 5000 | S      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Trichloroethylene (TCE)                                    | ug/l         | 5    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Tetrachloroethylene (PCE)                                  | ug/l         | 5    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| 1,1-Dichloroethylene                                       | ug/l         | 6    | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| cis-1,2-Dichloroethylene                                   | ug/l         | 6    | р      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Carbon Tetrachloride                                       | ug/l         | 0.5  | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| 1,1-Dichloroethane                                         | ug/l         | 100  | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| 1,2-Dichloroethane Fluorotrichloromethane-Freon11          | ug/l<br>ug/l | 0.5  | p<br>p | ND<br>ND      | ND<br>ND   | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND     | ND<br>ND     |
| Isopropylbenzene                                           | ug/l         | 150  | Р      | ND            | ND<br>ND   | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| n-Propylbenzene                                            | ug/l         |      | Г      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Dichlorodifluoromethane                                    | ug/l         |      |        | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Benzene                                                    | ug/l         | 1    | р      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| m,p-Xylenes                                                | ug/l         | 1750 | p      | ND            | ND         | ND            | ND            | ND           | ND           | ND           | ND           | ND           | ND          | ND           | ND           |
| Toluene<br>Ethyl hanzana                                   | ug/l         | 150  | p      | ND            | ND<br>ND   | ND            | ND<br>ND      | ND           | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND    | ND           | ND<br>ND     |
| Ethyl benzene MTBE                                         | ug/l<br>ug/l | 700  | p<br>p | ND<br>ND      | ND<br>ND   | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND     | ND<br>ND     |
| Perchlorate                                                | ug/l         | 6    | p      | 110           | 1410       | ND            | 1410          | ND           | ND           | 1410         | 110          | TAD          | 1410        | 110          | 14D          |
|                                                            |              |      | ľ      |               |            |               |               |              |              |              |              |              |             |              |              |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

(p): Primary MCL (s): Secondary MCL (ND): Not Detected

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 19 of 21

|                                                         |              |             |          |                    | _                  | age 19      | VI - I           |                  |                  |                  |                  |                  |                  |
|---------------------------------------------------------|--------------|-------------|----------|--------------------|--------------------|-------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                         |              |             |          | C4h                | C4h                | South       | C4l-             | C4l-             | C4h              | C4h              | Carath           | C 41-            | C4h              |
| W. t. O. Pt. C. o. Pt.                                  |              |             | ype      | South<br>Gate #1   | South<br>Gate #1   | Gate #1     | South<br>Gate #1 | South<br>Gate #1 | South<br>Gate #1 | South<br>Gate #1 | South<br>Gate #1 | South<br>Gate #1 | South<br>Gate #1 |
| Water Quality Constituents                              | <u>s</u>     | ر ا         | MCL Type | Zone 1             | Zone 1             | Zone 2      | Zone 2           | Zone 3           | Zone 3           | Zone 4           | Zone 4           | Zone 5           | Zone 5           |
|                                                         | Units        | MCL         | MC       | 4/29/2004          | 9/29/2004          | 4/29/2004   | 9/29/2004        | 4/29/2004        | 9/29/2004        | 4/29/2004        | 9/29/2004        | 4/29/2004        | 9/29/2004        |
| Total Dissolved Solid (TDS)                             | mg/l         | 1000        | s        | 320                | 310                | 420         | 420              | 440              | 430              | 470              | 460              | 540              | 550              |
| Cation Sum                                              | meq/l        |             | Ш        | 5.22               | 5.21               | 6.8         | 6.62             | 6.98             | 6.75             | 7.62             | 7.15             | 9.04             | 8.91             |
| Anion Sum                                               | meq/l        | 0.2         |          | 5.06               | 4.97               | 6.45        | 6.67             | 7.03             | 6.81             | 7.5              | 6.94             | 9.03             | 8.53             |
| Iron, Total, ICAP Manganese, Total, ICAP/MS             | mg/l<br>ug/l | 0.3         | S        | 0.058<br><b>68</b> | 0.053<br><b>69</b> | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | 0.074<br>130     | 0.074<br>130     |
| Turbidity                                               | NTU          | 5           | S        | 0.1                | 0.3                | 0.35        | 0.25             | 0.25             | 0.25             | 0.2              | 0.15             | 0.4              | 0.4              |
| Alkalinity                                              | mg/l         | _           | Ť        | 163                | 160                | 140         | 136              | 164              | 153              | 170              | 161              | 191              | 183              |
| Boron                                                   | mg/l         |             |          | 0.099              | 0.13               | 0.13        | 0.16             | 0.099            | 0.12             | 0.15             | 0.18             | 0.13             | 0.15             |
| Bicarbonate as HCO3,calculated                          | mg/l         |             |          | 198                | 194                | 170         | 165              | 199              | 186              | 207              | 196              | 232              | 223              |
| Calcium, Total, ICAP                                    | mg/l         |             |          | 50                 | 50                 | 73          | 72               | 77               | 75               | 81               | 76               | 93               | 92               |
| Carbonate as CO3, Calculated Hardness (Total, as CaCO3) | mg/l<br>mg/l |             |          | 2.57<br>158        | 3.17<br>157        | 1.39<br>240 | 1.35             | 2.05<br>258      | 1.92<br>249      | 1.69<br>268      | 1.01<br>252      | 1.51<br>331      | 0.0914<br>329    |
| Chloride                                                | mg/l         | 250         | s        | 21                 | 21                 | 49          | 52               | 45               | 45               | 52               | 46               | 110              | 98               |
| Fluoride                                                | mg/l         | 2           | р        | 0.3                | 0.28               | 0.3         | 0.29             | 0.36             | 0.35             | 0.36             | 0.35             | 0.41             | 0.4              |
| Hydroxide as OH, Calculated                             | mg/l         |             | Í        | 0.03               | 0.04               | 0.02        | 0.02             | 0.03             | 0.03             | 0.02             | 0.01             | 0.02             | 0.001            |
| Langelier Index - 25 degree                             | None         |             |          | 0.85               | 0.94               | 0.75        | 0.73             | 0.94             | 0.9              | 0.88             | 0.63             | 0.89             | -0.3             |
| Magnesium, Total, ICAP                                  | mg/l         |             |          | 8                  | 7.9                | 14          | 13               | 16               | 15               | 16               | 15               | 24               | 24               |
| Mercury                                                 | ug/l         | 2           | p        | ND                 | ND                 | ND<br>2.4   | ND<br>2.5        | ND               | ND<br>2.4        | ND               | ND               | ND               | ND               |
| Nitrate-N by IC Nitrite, Nitrogen by IC                 | mg/l<br>mg/l | 10          | p        | ND<br>ND           | ND<br>ND           | 2.4<br>ND   | 2.5<br>ND        | 2.4<br>ND        | 2.4<br>ND        | 1.6<br>ND        | 1.6<br>ND        | ND<br>ND         | ND<br>ND         |
| Potassium, Total, ICAP                                  | mg/l<br>mg/l | 1           | p        | 2.4                | 2.5                | 3.2         | 3.3              | 2.9              | 2.9              | 3.1              | 3                | 2.8              | ND<br>2.9        |
| Sodium, Total, ICAP                                     | mg/l         |             |          | 46                 | 46                 | 44          | 43               | 40               | 39               | 50               | 47               | 54               | 52               |
| Sulfate                                                 | mg/l         | 250         | s        | 57                 | 56                 | 100         | 110              | 110              | 110              | 120              | 110              | 100              | 100              |
| Surfactants                                             | mg/l         | 0.5         | s        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | 0.067            |
| Total Nitrate, Nitrite-N, CALC                          | mg/l         | 10          | p        | ND                 | ND                 | 2.4         | 2.5              | 2.4              | 2.4              | 1.6              | 1.6              | ND               | ND               |
| Total Organic Carbon                                    | mg/l         |             |          | ND                 | ND                 | ND          | ND               | ND<br>2.51       | ND               | 0.6              | ND               | 0.8              | 0.7              |
| Carbon Dioxide General Physicals                        | mg/l         |             |          | 1.98               | 1.54               | 2.7         | 2.62             | 2.51             | 2.35             | 3.29             | 4.93             | 4.64             | 70.7             |
| Apparent Color                                          | ACU          | 15          | s        | 3                  | 3                  | ND          | 3                | ND               | ND               | 3                | ND               | 3                | 3                |
| Lab pH                                                  | Units        |             |          | 8.3                | 8.4                | 8.1         | 8.1              | 8.2              | 8.2              | 8.1              | 7.9              | 8                | 6.8              |
| Odor                                                    | TON          | 3           | s        | 2                  | 1                  | 2           | 1                | 1                | 1                | 1                | 2                | 1                | 1                |
| pH of CaCO3 saturation(25C)                             | Units        |             |          | 7.449              | 7.458              | 7.351       | 7.37             | 7.26             | 7.3              | 7.221            | 7.272            | 7.111            | 7.133            |
| pH of CaCO3 saturation(60C)                             | Units        |             |          | 7                  | 7                  | 6.9         | 6.9              | 6.8              | 6.9              | 6.8              | 6.8              | 6.7              | 6.7              |
| Specific Conductance  Metals                            | umho/cm      |             |          | 489                | 484                | 642         | 623              | 656              | 642              | 713              | 685              | 863              | 868              |
| Aluminum, Total, ICAP/MS                                | ug/l         | 1000        | р        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Antimony, Total, ICAP/MS                                | ug/l         | 6           | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Arsenic, Total, ICAP/MS                                 | ug/l         | 50          | p        | 2.3                | 2.1                | 2.6         | 2.5              | 3                | 2.7              | 2.1              | 1.9              | 2.7              | 2.2              |
| Barium, Total, ICAP/MS                                  | ug/l         | 1000        | p        | 110                | 120                | 84          | 90               | 130              | 150              | 65               | 72               | 180              | 210              |
| Beryllium, Total, ICAP/MS                               | ug/l         | 4           | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Chromium, Total, ICAP/MS<br>Hexavalent Chromium (Cr VI) | ug/l<br>mg/l | 50          | p        | 1.9                | ND                 | 1.7         | ND               | 3                | 1.1              | 2.1              | 1.1              | 1.7              | 1.3              |
| Cadmium, Total, ICAP/MS                                 | ug/l         | 5           | р        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Copper, Total, ICAP/MS                                  | ug/l         | 1000        | s        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Lead, Total, ICAP/MS                                    | ug/l         | 15          |          | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Nickel, Total, ICAP/MS                                  | ug/l         | 100         | р        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Selenium, Total, ICAP/MS                                | ug/l         | 50          | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Silver, Total, ICAP/MS Thallium, Total, ICAP/MS         | ug/l         | 100         | S        | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         |
| Zinc, Total, ICAP/MS                                    | ug/l<br>ug/l | 5000        | p<br>s   | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>8.9        | ND<br>ND         |
| Volatile Organic Compounds                              | ug/1         | 2000        |          | ND                 | T,D                | 110         | 110              | T,D              | 110              | T.D              | 140              | 0.7              | ND               |
| Trichloroethylene (TCE)                                 | ug/l         | 5           | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | 1.4              | 1.1              | ND               | ND               |
| Tetrachloroethylene (PCE)                               | ug/l         | 5           | р        | ND                 | ND                 | ND          | ND               | 0.9              | 0.8              | 11               | 8                | ND               | ND               |
| 1,1-Dichloroethylene                                    | ug/l         | 6           | р        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| cis-1,2-Dichloroethylene<br>Carbon Tetrachloride        | ug/l         | 6           | p        | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         |
| 1,1-Dichloroethane                                      | ug/l<br>ug/l | 0.5         | p<br>p   | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         |
| 1,2-Dichloroethane                                      | ug/l         | 0.5         | р        | ND                 | ND                 | ND<br>ND    | ND               | ND               | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND               |
| Fluorotrichloromethane-Freon11                          | ug/l         | 150         | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Isopropylbenzene                                        | ug/l         |             |          | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| n-Propylbenzene                                         | ug/l         |             |          | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Dichlorodifluoromethane                                 | ug/l         |             |          | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Benzene<br>m n Vylanas                                  | ug/l         | 1750        | p        | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND               |
| m,p-Xylenes<br>Toluene                                  | ug/l<br>ug/l | 1750<br>150 | p<br>p   | ND<br>ND           | ND<br>ND           | ND<br>ND    | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         |
| Ethyl benzene                                           | ug/l         | 700         | р        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| MTBE                                                    | ug/l         | 13          | p        | ND                 | ND                 | ND          | ND               | ND               | ND               | ND               | ND               | ND               | ND               |
| Perchlorate                                             | ug/l         | 6           | p        |                    |                    |             |                  |                  |                  |                  |                  |                  |                  |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 20 of 21

|                                                     |              |      |          |                | _              | age 20         | 01 21          |                |                |                |                |                |                |
|-----------------------------------------------------|--------------|------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Water Quality Constituents                          |              |      | ype      | Whittier<br>#1 |
| water Quanty Constituents                           | Units        | MCL  | MCL Type | Zone 1         | Zone 1         | Zone 2         | Zone 2         | Zone 3         | Zone 3         | Zone 4         | Zone 4         | Zone 5         | Zone 5         |
|                                                     |              |      | _        | 5/27/2004      | 9/27/2004      | 5/27/2004      | 9/27/2004      | 5/27/2004      | 9/27/2004      | 5/27/2004      | 9/27/2004      | 5/27/2004      | 9/27/2004      |
| Total Dissolved Solid (TDS)                         | mg/l         | 1000 | S        | 2770           | 2800           | 2670           | 2630           | 1750           | 1750           | 700            | 710            | 700            | 700            |
| Cation Sum                                          | meq/l        |      |          | 41.8           | 39.6           | 39.2           | 37             | 27.2           | 26             | 12             | 11.7           | 11.4           | 11.1           |
| Anion Sum                                           | meq/l        | 0.0  |          | 42.2           | 39.2           | 38.8           | 38.4           | 25.7           | 26.3           | 11.3           | 10.9           | 10.9           | 10.5           |
| Iron, Total, ICAP                                   | mg/l         | 0.3  | S        | 0.57           | 0.55           | 0.46           | 0.42           | 0.28           | 0.27           | ND             | ND             | ND             | ND             |
| Manganese, Total, ICAP/MS                           | ug/l         | 50   | S        | 100            | 92             | 130            | 120            | 130            | 120            | 20             | 19             | 15             | 14             |
| Turbidity                                           | NTU          | 5    | S        | 3.9            | 3              | 3.1            | 2              | 1.7            | 1.6            | 0.2            | 0.15           | 1.6            | 1.3            |
| Alkalinity                                          | mg/l         |      |          | 254            | 251            | 261            | 271            | 268            | 280            | 243            | 245            | 221            | 223            |
| Boron                                               | mg/l         |      |          | 0.9            | 0.89           | 0.96           | 0.98           | 0.64           | 0.65           | 0.21           | 0.21           | 0.17           | 0.17           |
| Bicarbonate as HCO3,calculated                      | mg/l         |      |          | 310            | 306            | 318            | 330            | 327            | 341            | 296            | 299            | 269            | 272            |
| Calcium, Total, ICAP                                | mg/l         |      |          | 200            | 190            | 190            | 180            | 160            | 150            | 82             | 78             | 83             | 79             |
| Carbonate as CO3, Calculated                        | mg/l         |      |          | 0.637          | 0.792          | 0.654          | 1.7            | 0.846          | 1.4            | 0.766          | 0.974          | 0.553          | 1.12           |
| Hardness (Total, as CaCO3)                          | mg/l         | 250  |          | 1080           | 1010           | 1010           | 944            | 762            | 725            | 353            | 339            | 372            | 358            |
| Chloride                                            | mg/l         | 250  | S        | 280            | 250            | 230            | 210            | 180            | 170            | 76             | 71             | 83             | 77             |
| Fluoride                                            | mg/l         | 2    | p        | 0.27           | 0.26           | 0.29           | 0.28           | 0.49           | 0.48           | 0.18           | 0.17           | 0.3            | 0.29           |
| Hydroxide as OH, Calculated                         | mg/l         |      |          | 0.005          |                | 0.005          | 0.01           | 0.007          | 0.01           | 0.007          |                | 0.005          |                |
| Langelier Index - 25 degree  Magnesium, Total, ICAP | None<br>mg/l |      |          | 0.85<br>140    | 0.92<br>130    | 0.84<br>130    | 1.2            | 0.87<br>88     | 1.1<br>85      | 0.54<br>36     | 0.62<br>35     | 0.4<br>40      | 0.69           |
| Magnesium, Total, ICAP Mercury                      | mg/l         | 2    | -        | ND             |
| Nitrate-N by IC                                     | ug/l<br>mg/l | 10   | p        | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>4        | ND 4           | ND<br>4.9      | 4.9            |
| Nitrate-N by IC Nitrite, Nitrogen by IC             | mg/l<br>mg/l | 10   | p<br>p   | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND             | ND             | ND             | ND             |
| Potassium, Total, ICAP                              | mg/l<br>mg/l | 1    | b        | ND<br>11       | ND<br>11       | ND<br>11       | 10             | 7 7            | 6.9            | 4.1            | 4.2            | 3.6            | 3.5            |
| Sodium, Total, ICAP                                 | mg/l         |      |          | 460            | 440            | 430            | 410            | 270            | 260            | 110            | 110            | 89             | 89             |
| Sulfate                                             | mg/l         | 250  | s        | 1400           | 1300           | 1300           | 1300           | 730            | 760            | 190            | 180            | 180            | 170            |
| Surfactants                                         | mg/l         | 0.5  | S        | ND             |
| Total Nitrate, Nitrite-N, CALC                      | mg/l         | 10   | р        | ND             | ND             | ND             | ND             | ND             | ND             | 4              | 4              | 4.9            | 4.9            |
| Total Organic Carbon                                | mg/l         | 10   | Р        | 1.7            | 1.8            | 2.1            | 2.2            | 1.2            | 1.2            | ND             | ND             | ND             | ND             |
| Carbon Dioxide                                      | mg/l         |      |          | 19.6           | 15.4           | 20.1           | 8.31           | 16.4           | 10.8           | 14.9           | 11.9           | 17             | 8.62           |
| General Physicals                                   | 9            |      | _        | 5210           |                | 2011           | 0.02           |                |                | 2.17           |                |                | ****           |
| Apparent Color                                      | ACU          | 15   | S        | 15             | 15             | 15             | 15             | 10             | 5              | ND             | 3              | 3              | 3              |
| Lab pH                                              | Units        |      | Ť        | 7.5            | 7.6            | 7.5            | 7.9            | 7.6            | 7.8            | 7.6            | 7.7            | 7.5            | 7.8            |
| Odor                                                | TON          | 3    | s        | 2              | 2              | 3              | 2              | 3              | 2              | 2              | 1              | 2              | 1              |
| pH of CaCO3 saturation(25C)                         | Units        |      | Г        | 6.653          | 6.681          | 6.664          | 6.671          | 6.726          | 6.736          | 7.06           | 7.077          | 7.096          | 7.113          |
| pH of CaCO3 saturation(60C)                         | Units        |      |          | 6.2            | 6.2            | 6.2            | 6.2            | 6.3            | 6.3            | 6.6            | 6.6            | 6.7            | 6.7            |
| Specific Conductance                                | umho/cm      |      |          | 3420           | 3330           | 3240           | 3130           | 2290           | 2240           | 1080           | 1050           | 1050           | 1030           |
| Metals                                              |              |      |          |                | -              |                |                | •              | •              |                | •              |                |                |
| Aluminum, Total, ICAP/MS                            | ug/l         | 1000 | p        | ND             |
| Antimony, Total, ICAP/MS                            | ug/l         | 6    | p        | ND             |
| Arsenic, Total, ICAP/MS                             | ug/l         | 50   | p        | ND             | 1.6            | 1.8            | 1.6            | 1.5            | 1.4            | 1.4            | 1.7            | ND             | 1.2            |
| Barium, Total, ICAP/MS                              | ug/l         | 1000 | p        | 17             | 17             | 18             | 18             | 21             | 22             | 30             | 30             | 26             | 28             |
| Beryllium, Total, ICAP/MS                           | ug/l         | 4    | p        | ND             |
| Chromium, Total, ICAP/MS                            | ug/l         | 50   | p        | ND             | 1.4            | ND             | 1.2            | ND             | 1.1            | ND             | ND             | 2.9            | 3.4            |
| Hexavalent Chromium (Cr VI)                         | mg/l         |      |          |                |                |                |                |                |                |                |                |                |                |
| Cadmium, Total, ICAP/MS                             | ug/l         | 5    | p        | ND             |
| Copper, Total, ICAP/MS                              | ug/l         | 1000 | S        | ND             |
| Lead, Total, ICAP/MS                                | ug/l         | 15   |          | ND             |
| Nickel, Total, ICAP/MS                              | ug/l         | 100  | p        | 6.9            | 7.3            | 5.7            | 6.5            | ND             | 6.1            | ND             | ND             | ND             | ND             |
| Selenium, Total, ICAP/MS                            | ug/l         | 50   | p        | ND             | 12             | ND             | 18             |
| Silver, Total, ICAP/MS                              | ug/l         | 100  | S        | ND             |
| Thallium, Total, ICAP/MS                            | ug/l         | 2    | p        | ND             |
| Zinc, Total, ICAP/MS                                | ug/l         | 5000 | S        | ND             |
| Volatile Organic Compounds                          | 1/I          | E    |          | ND             | NID            |
| Trichloroethylene (TCE)                             | ug/l         | 5    | p        | ND<br>ND       | ND             |
| Tetrachloroethylene (PCE)                           | ug/l         | 5    | p        | ND<br>ND       |                |                | ND<br>ND       |                | ND<br>ND       | ND<br>ND       |                | ND<br>ND       | ND             |
| 1,1-Dichloroethylene                                | ug/l         | 6    | p        | ND             |
| cis-1,2-Dichloroethylene<br>Carbon Tetrachloride    | ug/l         | 6    | p        | ND<br>ND       | ND             |
| 1,1-Dichloroethane                                  | ug/l         | 0.5  | p        | ND<br>ND       |
| 1,1-Dichloroethane                                  | ug/l         | 0.5  | p        | ND<br>ND       |
| Fluorotrichloromethane-Freon11                      | ug/l<br>ug/l | 150  | p        | ND<br>ND       |
| Isopropylbenzene                                    | ug/l         | 130  | p        | ND             | ND<br>ND       | ND             |
| n-Propylbenzene                                     | ug/l<br>ug/l |      |          | ND<br>ND       | ND             |
| Dichlorodifluoromethane                             | ug/l         |      |          | ND<br>ND       |
| Benzene                                             | ug/l         | 1    | р        | ND             | ND             | ND<br>ND       | ND             | ND<br>ND       | ND<br>ND       | ND             | ND<br>ND       | ND<br>ND       | ND             |
| m,p-Xylenes                                         | ug/l         | 1750 | p        | ND             | ND<br>ND       | ND             |
| Toluene                                             | ug/l         | 1/30 | p        | ND             | ND             | ND<br>ND       | ND             | ND<br>ND       | ND<br>ND       | ND             | ND<br>ND       | ND<br>ND       | ND             |
| Ethyl benzene                                       | ug/l         | 700  | р        | ND             |
| MTBE                                                | ug/l         | 13   | р        | ND             | ND             | ND             | ND             | ND             | ND<br>ND       | ND             | ND             | ND             | ND             |
| Perchlorate                                         | ug/l         | 6    | р        | ND             | 112            | ND             | 112            | ND             | 1,12           | ND             | 110            | ND             | 1112           |
|                                                     | 45/1         |      | l P      | 110            |                | 112            |                | 110            |                | 110            |                | TID.           |                |

#### **TABLE 4.2** CENTRAL BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 21 of 21

| Water Qualifity Countrieves   Fig.   St.   St.   St.   St.   St.   St.   St.   Zower   Zower |                                |              |          |          |          |           |          |           |          |           |             |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-------------------|
| Tread Dismorberd Solid (TIDN)   mgg   1000   s   230   340   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330 | Water Quality Constituents     |              |          | ype      |          |           |          |           |          |           |             | Willowbrook<br>#1 |
| Tread Dismorberd Solid (TIDN)   mgg   1000   s   230   340   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330 | water Quanty Constituents      | t            | ٦        | LT       | Zone 1   | Zone 1    | Zone 2   | Zone 2    | Zone 3   | Zone 3    | Zone 4      | Zone 4            |
| Tread Dismorberd Solid (TIDN)   mgg   1000   s   230   340   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330   330 |                                | C            | MC       | MC       | 5/4/2004 | 9/21/2004 | 5/4/2004 | 9/21/2004 | 5/4/2004 | 9/21/2004 | 5/4/2004    | 9/21/2004         |
| Amers Smem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Dissolved Solid (TDS)    | 1            |          | S        | 320      | 340       | 330      | 340       | 320      | 350       | 330         | 340               |
| Total Prince   Company   | Cation Sum                     | meq/l        |          |          |          |           | 5.56     |           |          | 5.76      |             |                   |
| Magnesize Tool, ICAPANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |              |          |          |          |           |          |           |          |           |             |                   |
| Turbiday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |          |          |          |           |          |           |          |           |             |                   |
| Malatery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |          | _        |          |           |          |           |          |           |             |                   |
| Brown   Property   P |                                |              | 3        | S        |          |           |          |           |          |           |             |                   |
| Ricarbonnes and RCOL_calculations   mg      237   231   1998   1992   211   202   214   204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                              |              |          |          |          |           |          |           |          |           |             |                   |
| Calcium, rotal, ICAP   mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |              |          |          |          |           |          |           |          |           |             |                   |
| Carbonnes as CO3, Calculated   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |              |          |          |          |           |          |           |          |           |             |                   |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbonate as CO3, Calculated   |              |          |          |          | 2.38      |          |           |          |           |             |                   |
| Filtorisk   mg/l   2   p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hardness (Total, as CaCO3)     | mg/l         |          | Г        | 161      | 164       | 181      | 181       | 201      | 194       | 189         | 186               |
| Hydroxide as OH, Calvalated   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloride                       | mg/l         | 250      | s        | 19       | 19        | 20       | 21        | 20       | 20        | 23          | 23                |
| Langelier Index - 25 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | mg/l         | 2        | p        |          |           |          |           |          |           |             | <del></del>       |
| Magnesiam   Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                              |              |          |          |          |           |          |           |          | <b>.</b>  |             | <b>.</b>          |
| Mercary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |              |          |          |          |           |          |           |          |           |             |                   |
| Nirate N by C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |              | 2        | -        |          |           |          |           |          |           |             |                   |
| Ninfree Ninf |                                |              |          | <b>-</b> |          |           |          |           |          |           | <del></del> | <del></del>       |
| Poussisim Total, ICAP   mgf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              |          | _        |          |           |          |           |          |           |             |                   |
| Sedium   Total   ICAP   mgf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              | <u> </u> | P        |          |           |          |           |          |           |             |                   |
| Sulface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |              |          |          |          |           |          |           |          |           |             | ļ                 |
| Total Nimae, Nimites, N. CALC.   mg/l   0   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                        | mg/l         | 250      | s        | 59       | 55        | 73       | 72        | 72       | 72        | 69          | 68                |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surfactants                    | mg/l         | 0.5      | s        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Carbon Discide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Nitrate, Nitrite-N, CALC | mg/l         | 10       | p        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| General Physicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ü                              |              |          |          |          |           |          |           |          |           |             |                   |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | mg/l         |          |          | 4.74     | 2.92      | 3.15     | 1.92      | 5.31     | 3.21      | 4.28        | 3.24              |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | ACII         | 1.5      | I .      | -        | 10        | NID      | 2         |          | -         | 1 2         |                   |
| Oxfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |              | 15       | S        |          |           |          |           |          |           |             |                   |
| PH of CACO3 saturation(25C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              | 3        | ç        |          |           |          |           |          |           | <del></del> | <del></del>       |
| PH of CaCO3 saturation(60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              | 3        | 3        |          |           |          |           |          |           |             |                   |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 /                            |              |          |          |          |           |          |           |          |           |             |                   |
| Aluminum, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |              |          | Т        |          | 534       | 524      | 503       |          |           |             |                   |
| Antimony, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metals                         |              |          | _        |          | •         | •        |           | •        | •         | •           | •                 |
| Arsenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aluminum, Total, ICAP/MS       | ug/l         | 1000     | p        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Barium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | ug/l         |          | p        |          |           |          |           |          |           |             | <del></del>       |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |              |          | <u> </u> |          |           |          |           |          |           |             |                   |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              | -        | <b>•</b> |          |           |          |           |          |           |             | <del></del>       |
| Hexavalent Chromium (Cr VI)   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |              |          | -        |          |           |          |           |          | <b>.</b>  |             | -                 |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |              | 50       | p        | 4.1      | ND        | 3        | ND        | 2.8      | ND        | 3.3         | 2.5               |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` ′                            |              | 5        | n        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |              |          | _        |          |           |          |           |          |           | <del></del> | <del></del>       |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | **                             |              |          | Ť        |          |           |          |           |          |           |             |                   |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | ug/l         | 100      | р        |          |           |          |           |          |           |             |                   |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selenium, Total, ICAP/MS       | ug/l         | 50       | p        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | ug/l         | 100      | s        |          |           |          |           |          |           |             |                   |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |              |          | _        |          |           |          |           |          | -         | <del></del> | <del></del>       |
| Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | ug/l         | 5000     | S        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |              |          |          | 1170     | ) ID      | 175      | ) ID      | ) III    | 175       | 175         | 175               |
| 1,1-Dichloroethylene         ug/l         6         p         ND         ND <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              |          | _        |          |           |          |           |          |           | -           | -                 |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ` ` `                        |              |          | _        |          |           |          |           |          |           |             |                   |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |              |          | _        |          |           |          |           |          |           |             |                   |
| 1,1-Dichloroethane         ug/l         100         p         ND         ND <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td><del></del></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |              |          | _        |          |           |          |           |          | -         |             | <del></del>       |
| 1,2-Dichloroethane         ug/l         0.5         p         ND         ND <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |              |          | _        |          |           |          |           |          |           |             |                   |
| Fluorotrichloromethane-Freon11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |              | _        |          |          |           |          |           |          |           |             |                   |
| n-Propylbenzene         ug/l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluorotrichloromethane-Freon11 |              | 150      | _        | ND       | ND        | ND       | ND        | ND       | ND        | ND          | ND                |
| Dichlorodifluoromethane         ug/l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | ug/l         |          |          |          |           |          |           |          |           |             |                   |
| Benzene   Ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                            |              |          | $\Box$   |          |           |          |           |          |           |             | <del></del>       |
| m,p-Xylenes         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |              |          |          |          |           |          |           |          | <b>.</b>  |             | <b>.</b>          |
| Toluene   ug/l   150   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |              |          | -        |          |           |          |           |          |           |             |                   |
| Ethyl benzene         ug/l         700         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                             |              |          | -        |          |           |          |           |          |           |             |                   |
| MTBE ug/l 13 p ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |              | -        | -        |          |           |          |           |          |           | <del></del> | <del></del>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                              |              |          | -        |          |           |          |           |          |           |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Perchlorate                    | ug/l<br>ug/l | 6        | p<br>p   | MD       | ND        | ND       | מא        | ND       | ND        | ND          | ND                |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 1 of 15

|                                                       |              |          |          |              | - 45         | e 1 01 15    |              |              |              |              |              |
|-------------------------------------------------------|--------------|----------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Water Quality Constituents                            |              |          | lype     | Carson<br>#1 |
| <del>L</del>                                          | Units        | MCL      | MCL Type | Zone 1       | Zone 1       | Zone 2       | Zone 2       | Zone 3       | Zone 3       | Zone 4       | Zone 4       |
|                                                       | ū            | Σ        | Z        | 4/8/04       | 9/9/04       | 4/8/04       | 9/9/04       | 4/8/04       | 9/9/04       | 4/8/04       | 9/9/04       |
| General Mineral Total Dissolved Solid (TDS)           | mg/l         | 1000     | S        | 210          | 200          | 230          | 220          | 320          | 310          | 410          | 390          |
| Cation Sum                                            | meq/l        | 1000     | 3        | 3.49         | 3.61         | 4.11         | 4.05         | 5.31         | 5.22         | 6.9          | 6.58         |
| Anion Sum                                             | meq/1        |          |          | 3.49         | 3.39         | 3.99         | 3.87         | 5.2          | 4.95         | 6.65         | 6.25         |
| Iron, Total, ICAP                                     | mg/l         | 0.3      | s        | 0.021        | 0.025        | 0.022        | 0.024        | 0.014        | ND           | 0.056        | 0.055        |
| Manganese, Total, ICAP/MS                             | ug/l         | 50       | s        | 30           | 31           | 22           | 20           | 35           | 34           | 92           | 84           |
| Turbidity                                             | NTU          | 5        | s        | 0.1          | 0.75         | 0.1          | 0.2          | 0.05         | 0.1          | 1.7          | 2.8          |
| Alkalinity                                            | mg/l         |          |          | 147          | 142          | 172          | 166          | 168          | 157          | 203          | 187          |
| Boron                                                 | mg/l         | <u> </u> |          | 0.1          | 0.1          | 0.11         | 0.11         | 0.12         | 0.11         | 0.13         | 0.13         |
| Bicarbonate as HCO3,calculated                        | mg/l         |          |          | 179          | 172          | 209          | 201          | 204          | 191          | 247          | 227          |
| Calcium, Total, ICAP Carbonate as CO3, Calculated     | mg/l         |          |          | 20<br>1.84   | 21<br>1.77   | 33<br>1.71   | 32<br>3.28   | 45<br>2.65   | 45<br>1.97   | 2.54         | 57<br>1.86   |
| Hardness (Total, as CaCO3)                            | mg/l<br>mg/l |          |          | 66.8         | 70.1         | 11.71        | 108          | 166          | 162          | 2.34         | 200          |
| Chloride                                              | mg/l         | 250      | s        | 19           | 19           | 19           | 19           | 21           | 20           | 37           | 36           |
| Fluoride                                              | mg/l         | 2        | р        | 0.24         | 0.23         | 0.2          | 0.19         | 0.29         | 0.28         | 0.4          | 0.37         |
| Hydroxide as OH, Calculated                           | mg/l         |          |          | 0.03         | 0.03         | 0.02         | 0.04         | 0.03         | 0.03         | 0.03         | 0.02         |
| Langelier Index - 25 degree                           | None         |          |          | 0.31         | 0.31         | 0.49         | 0.76         | 0.82         | 0.69         | 0.93         | 0.77         |
| Magnesium, Total, ICAP                                | mg/l         |          |          | 4.1          | 4.3          | 6.9          | 6.9          | 13           | 12           | 15           | 14           |
| Mercury                                               | ug/l         | 2        | p        | ND           |
| Nitrate-N by IC                                       | mg/l         | 10       | p        | ND           |
| Nitrite, Nitrogen by IC Potassium, Total, ICAP        | mg/l         | 1        | p        | ND<br>2.7    | ND<br>2.9    | ND<br>2.4    | ND<br>2.3    | ND<br>2.9    | ND<br>2.9    | ND<br>4      | ND<br>3.9    |
| Sodium, Total, ICAP                                   | mg/l<br>mg/l |          |          | 48           | 2.9<br>49    | 42           | 42           | 2.9          | 2.9          | 59           | 57           |
| Sulfate                                               | mg/l         | 250      | s        | ND           | ND           | ND           | ND           | 59           | 59           | 73           | 71           |
| Surfactants                                           | mg/l         | 0.5      | S        | ND           |
| Total Nitrate, Nitrite-N, CALC                        | mg/l         | 10       | р        | ND           |
| Total Organic Carbon                                  | mg/l         |          |          | 1            | 0.7          | 0.6          | ND           | ND           | ND           | 0.6          | ND           |
| Carbon Dioxide                                        | mg/l         |          |          | 2.26         | 2.17         | 3.32         | 1.6          | 2.04         | 2.41         | 3.12         | 3.61         |
| General Physical                                      |              |          |          |              |              |              |              |              |              |              |              |
| Apparent Color                                        | ACU          | 15       | S        | 5            | 5            | 3            | 3            | ND           | 3            | 3            | 3            |
| Lab pH                                                | Units        | 1 2      |          | 8.2          | 8.2          | 8.1          | 8.4          | 8.3          | 8.2          | 8.2          | 8.1          |
| Odor<br>pH of CaCO3 saturation(25C)                   | Units        | 3        | S        | 7.891        | 7.887        | 7,606        | 7.637        | 7.482        | 7.511        | 7,274        | 7.333        |
| pH of CaCO3 saturation(60C)                           | Units        |          |          | 7.4          | 7.4          | 7.2          | 7.037        | 7.482        | 7.1          | 6.8          | 6.9          |
| Specific Conductance                                  | ımho/cı      | m        |          | 339          | 321          | 390          | 369          | 508          | 492          | 659          | 622          |
| Metal                                                 |              |          |          |              |              |              |              |              |              |              |              |
| Aluminum, Total, ICAP/MS                              | ug/l         | 1000     | р        | ND           |
| Antimony, Total, ICAP/MS                              | ug/l         | 6        | p        | ND           |
| Arsenic, Total, ICAP/MS                               | ug/l         | 50       | p        | 1.1          | 1.3          | ND           | ND           | ND           | ND           | ND           | ND           |
| Barium, Total, ICAP/MS                                | ug/l         | 1000     | p        | 17<br>ND     | 18           | 36           | 37           | 66           | 68           | 230          | 220          |
| Beryllium, Total, ICAP/MS<br>Chromium, Total, ICAP/MS | ug/l         | 50       | p        | ND<br>ND     |
| Hexavalent Chromium (Cr VI)                           | ug/l<br>mg/l | 30       | p        | ND           |
| Cadmium, Total, ICAP/MS                               | ug/l         | 5        | р        | ND           |
| Copper, Total, ICAP/MS                                | ug/l         | 1000     |          | ND           |
| Lead, Total, ICAP/MS                                  | ug/l         | 15       |          | ND           |
| Nickel, Total, ICAP/MS                                | ug/l         | 100      | p        | ND           |
| Selenium, Total, ICAP/MS                              | ug/l         | 50       | p        | ND           |
| Silver, Total, ICAP/MS                                | ug/l         | 100      | S        | ND           |
| Thallium, Total, ICAP/MS                              | ug/l         | 2        | p        | ND           |
| Zinc, Total, ICAP/MS  Volatile Organic Compounds      | ug/l         | 5000     | S        | ND           |
| Trichloroethylene (TCE)                               | ug/l         | 5        | р        | ND           |
| Tetrachloroethylene (PCE)                             | ug/l         | 5        | p        | ND           | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND           | ND           | ND           |
| 1,1-Dichloroethylene                                  | ug/l         | 6        | р        | ND           | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND     | ND           |
| cis-1,2-Dichloroethylene                              | ug/l         | 6        | p        | ND           |
| Carbon Tetrachloride                                  | ug/l         | 0.5      | p        | ND           |
| 1,1-Dichloroethane                                    | ug/l         | 100      | p        | ND           |
| 1,2-Dichloroethane                                    | ug/l         | 0.5      | p        | ND           |
| Fluorotrichloromethane-Freon 11                       | ug/l         | 150      | p        | ND           |
| Isopropylbenzene                                      | ug/l         |          |          | ND           |
| n-Propylbenzene                                       | ug/l         |          |          | ND           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND           |
| Dichlorodifluoromethane<br>Benzene                    | ug/l<br>ug/l | 1        | р        | ND<br>ND     |
| Toluene                                               | ug/l         | 1750     | <u> </u> | ND<br>ND     |
| m,p-Xylenes                                           | ug/1         | 150      | р        | ND           | ND<br>ND     | ND           | ND           | ND           | ND           | ND           | ND           |
| Ethyl benzene                                         | ug/l         | 700      | р        | ND           |
| MTBE                                                  | ug/L         | 13       | p        | ND           |
| Perchlorate                                           | ug/l         | 6        | p        |              |              |              |              |              |              |              |              |
|                                                       |              |          |          |              |              |              |              |              |              |              |              |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

(p): Primary MCL (s): Secondary MCL (ND): Not Detected

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 2 of 15

|                                 |              |      |          |                  |                   | 1 age 2          |                   |                  |                   |                  |                   |                  |                   |
|---------------------------------|--------------|------|----------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|
| Water Quality Constituents      |              |      | Fype     | Carson<br>#2     | Carson<br>#2      |
|                                 | Units        | MCL  | MCL Type | Zone 1<br>4/5/04 | Zone 1<br>9/30/04 | Zone 2<br>4/5/04 | Zone 2<br>9/30/04 | Zone 3<br>4/5/04 | Zone 3<br>9/30/04 | Zone 4<br>4/5/04 | Zone 4<br>9/30/04 | Zone 5<br>4/5/04 | Zone 5<br>9/30/04 |
| General Mineral                 |              |      | -        | 4/3/04           | 3/30/04           | 4/3/04           | 9/30/04           | 4/3/04           | 3/30/04           | 4/3/04           | 3/30/04           | 4/3/04           | 3/30/04           |
| Total Dissolved Solid (TDS)     | mg/l         | 1000 | s        | 240              | 270               | 250              | 250               | 250              | 230               | 270              | 250               | 290              | 340               |
| Cation Sum                      | meq/l        | 1000 | 3        | 3.8              | 4.72              | 4.42             | 4.55              | 4.44             | 3.88              | 4.81             | 4.9               | 4.51             | 4.72              |
|                                 | meq/1        |      |          | 3.78             | 4.72              | 4.42             | 4.35              | 4.34             | 3.8               | 4.72             | 4.56              | 4.51             | 4.43              |
| Anion Sum                       |              | 0.2  |          |                  |                   | 0.011            | 4.33<br>ND        | 0.03             | ND                | 0.025            | 4.56<br>ND        | 0.016            | 4.43<br>ND        |
| Iron, Total, ICAP               | mg/l         | 0.3  | S        | 0.017            | 0.027             |                  | 12                |                  | ND<br>ND          | 28               | ND<br>19          |                  | 59                |
| Manganese, Total, ICAP/MS       | ug/l         | 50   | S        | 3.1              |                   | 16               |                   | 28               |                   |                  |                   | 67               |                   |
| Turbidity                       | NTU          | 5    | s        | 0.65             | 0.2               | 0.15             | 0.15              | 0.15             | 1.6               | 0.35             | 0.4               | 14               | 66                |
| Alkalinity                      | mg/l         |      | -        | 163              | 173               | 190              | 186               | 183              | 161               | 206              | 195               | 181              | 173               |
| Boron                           | mg/l         |      | $\vdash$ | 0.14             | 0.14              | 0.13             | 0.14              | 0.13             | 0.15              | 0.11             | 0.12              | 0.1              | 0.12              |
| Bicarbonate as HCO3,calculated  | mg/l         |      |          | 195              | 209               | 230              | 225               | 222              | 193               | 250              | 237               | 220              | 210               |
| Calcium, Total, ICAP            | mg/l         |      | $\vdash$ | 2.2              | 24                | 12               | 12                | 23               | 2.2               | 36               | 36                | 36               | 40                |
| Carbonate as CO3, Calculated    | mg/l         |      | _        | 10.1             | 4.3               | 4.73             | 5.82              | 3.62             | 7.91              | 2.05             | 2.44              | 1.43             | 2.72              |
| Hardness (Total, as CaCO3)      | mg/l         |      |          | 7.1              | 93.3              | 46.4             | 46.4              | 88.3             | 7.06              | 139              | 139               | 125              | 138               |
| Chloride                        | mg/l         | 250  | s        | 18               | 23                | 20               | 22                | 20               | 20                | 21               | 23                | 20               | 22                |
| Fluoride                        | mg/l         | 2    | p        | 0.32             | 0.26              | 0.19             | 0.16              | 0.27             | 0.31              | 0.23             | 0.22              | 0.28             | 0.27              |
| Hydroxide as OH, Calculated     | mg/l         |      |          | 0.1              | 0.05              | 0.05             | 0.07              | 0.04             | 0.1               | 0.02             | 0.03              | 0.02             | 0.03              |
| Langelier Index - 25 degree     | None         |      | Ĺ        | 0.087            | 0.75              | 0.5              | 0.59              | 0.66             | -0.009            | 0.61             | 0.69              | 0.45             | 0.78              |
| Magnesium, Total, ICAP          | mg/l         |      |          | 0.39             | 8.1               | 4                | 4                 | 7.5              | 0.38              | 12               | 12                | 8.6              | 9.2               |
| Mercury                         | ug/l         | 2    | p        | ND               | ND                |
| Nitrate-N by IC                 | mg/l         | 10   | p        | ND               | ND                |
| Nitrite, Nitrogen by IC         | mg/l         | 1    | р        | ND               | ND                |
| Potassium, Total, ICAP          | mg/l         |      | Ĺ        | 1.8              | 4.3               | 3.9              | 4                 | 4.1              | 1.6               | 4.1              | 4.2               | 3.3              | 3.5               |
| Sodium, Total, ICAP             | mg/l         |      |          | 83               | 63                | 78               | 81                | 59               | 85                | 44               | 46                | 44               | 43                |
| Sulfate                         | mg/l         | 250  | s        | ND               | 19                | 2                | ND                | 4.7              | ND                | ND               | ND                | 15               | 16                |
| Surfactants                     | mg/l         | 0.5  | s        | ND               | ND                |
| Total Nitrate, Nitrite-N, CALC  | mg/l         | 10   | р        | ND               | ND                |
| Total Organic Carbon            | mg/l         | 10   | Р        | 1.7              | 0.6               | 0.9              | 1                 | 1.1              | 1.4               | 1                | 0.9               | ND               | ND                |
| Carbon Dioxide                  | mg/l         |      |          | 0.491            | 1.32              | 1.45             | 1.13              | 1.77             | 0.612             | 3.97             | 2.99              | 4.4              | 2.1               |
| General Physical                | IIIg/1       |      | -        | 0.471            | 1.32              | 1.43             | 1.13              | 1.//             | 0.012             | 3.71             | 2.77              | 7.7              | 2.1               |
|                                 | ACU          | 15   | s        | 40               | 10                | 15               | 20                | 10               | 40                | 10               | 3                 | 5                | 10                |
| Apparent Color                  | _            | 13   | S        | 8.9              | 8.5               | 8.5              |                   | 8.4              |                   |                  | 8.2               | 8                | 8.3               |
| Lab pH                          | Units        | 2    | $\vdash$ |                  | 2                 | 8.3              | 8.6               |                  | 8.8               | 8.1              |                   | 2                | 2                 |
| Odor                            | TON          | 3    | S        | 1 0.012          |                   | •                | 1 0.014           | 8                |                   | 3                | 3                 |                  |                   |
| pH of CaCO3 saturation(25C)     | Units        |      |          | 8.813            | 7.745             | 8.004            | 8.014             | 7.737            | 8.817             | 7.491            | 7.514             | 7.546            | 7.521             |
| pH of CaCO3 saturation(60C)     | Units        |      | -        | 8.4              | 7.3               | 7.6              | 7.6               | 7.3              | 8.4               | 7                | 7.1               | 7.1              | 7.1               |
| Specific Conductance            | mho/cr       | n    | _        | 383              | 448               | 443              | 430               | 425              | 374               | 464              | 453               | 446              | 444               |
| Metal                           |              |      | ╙        |                  |                   |                  |                   |                  |                   |                  |                   |                  |                   |
| Aluminum, Total, ICAP/MS        | ug/l         | 1000 | -        | 28               | ND                | ND               | ND                | ND               | ND                | ND               | ND                | ND               | ND                |
| Antimony, Total, ICAP/MS        | ug/l         | 6    | p        | ND               | ND                |
| Arsenic, Total, ICAP/MS         | ug/l         | 50   | p        | 1.2              | ND                | ND               | ND                | ND               | ND                | ND               | ND                | 1.3              | ND                |
| Barium, Total, ICAP/MS          | ug/l         | 1000 | p        | ND               | 11                | 6.9              | 6                 | 11               | ND                | 18               | 17                | 15               | 15                |
| Beryllium, Total, ICAP/MS       | ug/l         | 4    | p        | ND               | ND                |
| Chromium, Total, ICAP/MS        | ug/l         | 50   | p        | ND               | ND                |
| Hexavalent Chromium (Cr VI)     | mg/l         |      | П        | ND               |                   |
| Cadmium, Total, ICAP/MS         | ug/l         | 5    | p        | ND               | ND                |
| Copper, Total, ICAP/MS          | ug/l         | 1000 | +-       | ND               | ND                |
| Lead, Total, ICAP/MS            | ug/l         | 1.5  |          | ND               | ND                |
| Nickel, Total, ICAP/MS          | ug/l         | 100  | р        | ND               | ND                |
| Selenium, Total, ICAP/MS        | ug/l         | 50   | p        | ND               | ND                |
| Silver, Total, ICAP/MS          | ug/l         | 100  | +-       | ND               | ND                |
| Thallium, Total, ICAP/MS        | ug/l         | 2    | p        | ND               | ND                |
| Zinc, Total, ICAP/MS            | ug/l         | 5000 | +-       | ND               | ND                |
| Volatile Organic Compounds      | ug/1         | 5000 | 3        | ND               | ND                |
| Trichloroethylene (TCE)         | ug/l         | 5    | p        | ND               | ND                |
| Tetrachloroethylene (PCE)       |              | 5    | +-       | ND               | ND<br>ND          | ND               | ND                | ND               | ND<br>ND          | ND<br>ND         | ND                |                  | ND<br>ND          |
|                                 | ug/l         | -    | p        |                  |                   |                  |                   |                  |                   |                  |                   | ND<br>ND         |                   |
| 1,1-Dichloroethylene            | ug/l         | 6    | p        | ND               | ND<br>ND          | ND<br>ND         | ND<br>ND          | ND<br>ND         | ND                | ND<br>ND         | ND<br>ND          | ND<br>ND         | ND                |
| cis-1,2-Dichloroethylene        | ug/l         | 6    | p        | ND               | ND                |
| Carbon Tetrachloride            | ug/l         | 0.5  | p        | ND               | ND                |
| 1,1-Dichloroethane              | ug/l         | 100  | + -      | ND               | ND                |
| 1,2-Dichloroethane              | ug/l         | 0.5  | p        | ND               | ND                |
| Fluorotrichloromethane-Freon 11 | ug/l         | 150  | p        | ND               | ND                |
| Isopropylbenzene                | ug/l         |      |          | ND               | ND                |
| n-Propylbenzene                 | ug/l         |      | $\perp$  | ND               | ND                |
| Dichlorodifluoromethane         | ug/l         |      |          | ND               | ND                |
| Benzene                         | ug/l         | 1    | p        | ND               | ND                |
| Toluene                         | ug/l         | 1750 | +-       | ND               | ND                |
| m,p-Xylenes                     | ug/l         | 150  | -        | ND               | ND                |
| Ethyl benzene                   | ug/l         | 700  | <u> </u> | ND               | ND                |
| MTBE                            | ug/L         | 13   | p        | ND               | ND                |
| Perchlorate                     | ug/L<br>ug/l | 6    | р        | ND               | 110               | ND               | 140               | ND<br>ND         | 1415              | ND<br>ND         | 1410              | ND               | 1410              |
| 1 CICIIIOI atc                  | ug/I         | . 0  | 1 1      | IND              |                   |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 3 of 15

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113                                                          |                                                                                                    |                                         |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|
| Water Quality Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                    | MCL Type                                | Chandler<br>#3b                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units                                                        | MCL                                                                                                | 1CL                                     | Zone 1<br>9/30/04                        |
| General Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                            | 2                                                                                                  | 2                                       | 9/30/04                                  |
| Total Dissolved Solid (TDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                         | 1000                                                                                               | S                                       | 570                                      |
| Cation Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | meq/l                                                        | 1000                                                                                               | 3                                       | 10.5                                     |
| Anion Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | meq/l                                                        |                                                                                                    |                                         | 9.74                                     |
| Iron, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/l                                                         | 0.3                                                                                                | s                                       | 0.21                                     |
| Manganese, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/l                                                         | 50                                                                                                 | S                                       | 77                                       |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTU                                                          | 5                                                                                                  | s                                       | 0.9                                      |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l                                                         |                                                                                                    |                                         | 303                                      |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/l                                                         |                                                                                                    |                                         | 0.22                                     |
| Bicarbonate as HCO3,calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/l                                                         |                                                                                                    |                                         | 368                                      |
| Calcium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                         |                                                                                                    |                                         | 70                                       |
| Carbonate as CO3, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/l                                                         |                                                                                                    |                                         | 3.79                                     |
| Hardness (Total, as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l                                                         |                                                                                                    |                                         | 261                                      |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/l                                                         | 250                                                                                                | s                                       | 130                                      |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/l                                                         | 2                                                                                                  | р                                       | 0.25                                     |
| Hydroxide as OH, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                         |                                                                                                    |                                         | 0.03                                     |
| Langelier Index - 25 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                         |                                                                                                    |                                         | 1.2                                      |
| Magnesium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                         |                                                                                                    |                                         | 21                                       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/l                                                         | 2                                                                                                  | р                                       | ND                                       |
| Nitrate-N by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l                                                         | 10                                                                                                 | р                                       | ND                                       |
| Nitrite, Nitrogen by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                         | 1                                                                                                  | p                                       | ND                                       |
| Potassium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                         |                                                                                                    | ľ                                       | 3                                        |
| Sodium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/l                                                         |                                                                                                    |                                         | 120                                      |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                         | 250                                                                                                | s                                       | ND                                       |
| Surfactants                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                         | 0.5                                                                                                | S                                       | ND                                       |
| Total Nitrate, Nitrite-N, CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/l                                                         | 10                                                                                                 | р                                       | ND                                       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                         | 10                                                                                                 | Р                                       | 1.4                                      |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/l                                                         |                                                                                                    |                                         | 4.64                                     |
| General Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/1                                                         |                                                                                                    |                                         | 7.07                                     |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACU                                                          | 15                                                                                                 | S                                       | 10                                       |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                        | 13                                                                                                 | 3                                       | 8.2                                      |
| Odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TON                                                          | 3                                                                                                  | S                                       | 2                                        |
| pH of CaCO3 saturation(25C)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                        | 3                                                                                                  | 3                                       | 7.034                                    |
| pH of CaCO3 saturation(60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                        |                                                                                                    |                                         | 6.6                                      |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mho/cr                                                       | n                                                                                                  |                                         | 998                                      |
| Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iiiiio/ci                                                    |                                                                                                    |                                         | 776                                      |
| Aluminum, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                                         | 1000                                                                                               | р                                       | ND                                       |
| Antimony, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                                         | 6                                                                                                  | p                                       | ND                                       |
| Arsenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/l                                                         | 50                                                                                                 | p                                       | 2.7                                      |
| Barium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l                                                         | 1000                                                                                               | p                                       | 100                                      |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/l                                                         | 4                                                                                                  | p                                       | ND                                       |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                                         | 50                                                                                                 | р                                       | 1.2                                      |
| Hexavalent Chromium (Cr VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                         | 50                                                                                                 | Р                                       | 1.2                                      |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/l                                                         | 5                                                                                                  | n                                       | ND                                       |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | 1000                                                                                               | p<br>s                                  | ND                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/l                                                         | LUUU                                                                                               | 5                                       | ND                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1200/1                                                       |                                                                                                    |                                         | NID                                      |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                                         | 15                                                                                                 |                                         | ND<br>ND                                 |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l                                                         | 15<br>100                                                                                          | р                                       | ND                                       |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/l<br>ug/l                                                 | 15<br>100<br>50                                                                                    | p<br>p                                  | ND<br>ND                                 |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS<br>Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                       | ug/l<br>ug/l<br>ug/l                                         | 15<br>100<br>50<br>100                                                                             | p<br>p                                  | ND<br>ND<br>ND                           |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS<br>Silver, Total, ICAP/MS<br>Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                           | ug/l<br>ug/l<br>ug/l<br>ug/l                                 | 15<br>100<br>50<br>100<br>2                                                                        | p<br>p<br>s                             | ND<br>ND<br>ND<br>ND                     |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS<br>Silver, Total, ICAP/MS<br>Thallium, Total, ICAP/MS<br>Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                   | ug/l<br>ug/l<br>ug/l                                         | 15<br>100<br>50<br>100                                                                             | p<br>p                                  | ND<br>ND<br>ND                           |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                    | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l                         | 15<br>100<br>50<br>100<br>2<br>5000                                                                | p<br>p<br>s<br>p                        | ND<br>ND<br>ND<br>ND<br>ND               |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                            | ug/l ug/l ug/l ug/l ug/l ug/l                                | 15<br>100<br>50<br>100<br>2<br>5000                                                                | p p s p                                 | ND ND ND ND ND ND ND ND                  |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                  | ug/l ug/l ug/l ug/l ug/l ug/l ug/l                           | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5                                                      | p p s p p p                             | ND ND ND ND ND ND ND ND ND               |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene                                                                                                                                                                                                                                        | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6                                                 | p p s p s p p p                         | ND      |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene                                                                                                                                                                                          | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6                                                 | p p s p s p p p                         | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride                                                                                                                                                                                          | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5                                     | p p s p p s                             | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane                                                                                                                                                                       | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100                              | p p s p p p p p p p p                   | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane                                                                                                                                                  | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5                       | p p s p p s p p p p p p                 | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11                                                                                                                   | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100                              | p p s p p p p p p p p                   | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene                                                                         | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5                       | p p s p p s p p p p p p                 | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene                                                                              | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5                       | p p s p p s p p p p p p                 | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane                                     | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150                             | p p s s p p p p p p p p p p             | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene                                 | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>6<br>6<br>0.5<br>100<br>0.5                            | p p s p p s p p p p p p p p p           | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene                           | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150                | p p s p p p p p p p p p p p p p p p p   | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene m,p-Xylenes | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150                | p p s p p p p p p p p p p p p p p p p p | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,2-Dichloroethylene 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene m,p-Xylenes Ethyl benzene          | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150<br>1750<br>700 | p p s p p p p p p p p p p p p p p p p p | ND N |
| Nickel, Total, ICAP/MS Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene m,p-Xylenes | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150                | p p s p p p p p p p p p p p p p p p p p | ND N |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 4 of 15**

|                                                     |                |            |          |               | - 45             | 2 4 01 15       |               |               |               |               |               |
|-----------------------------------------------------|----------------|------------|----------|---------------|------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| Water Quality Constituents                          |                |            | MCL Type | Gardena<br>#1 | Gardena<br>#1    | Gardena<br>#1   | Gardena<br>#1 | Gardena<br>#1 | Gardena<br>#1 | Gardena<br>#1 | Gardena<br>#1 |
|                                                     | Units          | 15         |          | Zone 1        | Zone 1           | Zone 2          | Zone 2        | Zone 3        | Zone 3        | Zone 4        | Zone 4        |
|                                                     | Un             | MCL        | M        | 4/15/04       | 9/13/04          | 4/15/04         | 9/13/04       | 4/15/04       | 9/13/04       | 4/15/04       | 9/13/04       |
| General Mineral                                     |                | 1000       |          | 250           | 250              | 220             | 240           | 240           | 240           | 1500          | 4550          |
| Total Dissolved Solid (TDS) Cation Sum              | mg/l           | 1000       | S        | 350<br>5.88   | 350<br>5.9       | 330<br>5.69     | 340<br>5.7    | 340<br>5.67   | 340<br>5.56   | 1530<br>23.5  | 23.7          |
| Anion Sum                                           | meq/l<br>meq/l | _          |          | 6.05          | 5.68             | 5.36            | 5.24          | 5.39          | 5.1           | 23.5          | 26.8          |
| Iron, Total, ICAP                                   | mg/l           | 0.3        | s        | 0.075         | 0.079            | 0.013           | 0.032         | 0.017         | ND            | ND            | ND            |
| Manganese, Total, ICAP/MS                           | ug/l           | 50         | s        | 33            | 41               | 65              | 70            | 28            | 27            | ND            | ND            |
| Turbidity                                           | NTU            | 5          | s        | 2.4           | 1.2              | 15              | 4.2           | 7             | 16            | 15            | 14            |
| Alkalinity                                          | mg/l           |            |          | 278           | 261              | 180             | 165           | 171           | 158           | 171           | 165           |
| Boron                                               | mg/l           | $\perp$    | L        | 0.37          | 0.41             | 0.14            | 0.14          | 0.13          | 0.12          | 0.16          | 0.13          |
| Bicarbonate as HCO3,calculated                      | mg/l           |            |          | 338           | 317              | 219             | 201           | 208           | 192           | 208           | 201           |
| Calcium, Total, ICAP Carbonate as CO3, Calculated   | mg/l           |            |          | 13<br>3.48    | 13<br>3.26       | 55<br>1.13      | 56<br>1.04    | 57<br>1.7     | 55<br>1.57    | 260<br>0.34   | 260<br>0.261  |
| Hardness (Total, as CaCO3)                          | mg/l<br>mg/l   |            |          | 64.6          | 63.8             | 1.13            | 1.04          | 188           | 183           | 950           | 958           |
| Chloride                                            | mg/l           | 250        | s        | 17            | 16               | 24              | 20            | 22            | 21            | 650           | 770           |
| Fluoride                                            | mg/l           | 2          | р        | 0.2           | 0.18             | 0.4             | 0.37          | 0.36          | 0.31          | 0.15          | 0.15          |
| Hydroxide as OH, Calculated                         | mg/l           |            |          | 0.03          | 0.03             | 0.01            | 0.01          | 0.02          | 0.02          | 0.004         | 0.003         |
| Langelier Index - 25 degree                         | None           |            |          | 0.4           | 0.37             | 0.54            | 0.51          | 0.73          | 0.68          | 0.69          | 0.57          |
| Magnesium, Total, ICAP                              | mg/l           |            |          | 7.8           | 7.6              | 13              | 13            | 11            | 11            | 73            | 75            |
| Mercury                                             | ug/l           | 2          | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND<br>12      | ND<br>12      |
| Nitrate-N by IC                                     | mg/l           | 10         | p        | ND<br>ND      | ND<br>ND         | ND<br>ND        | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND            | ND            |
| Nitrite, Nitrogen by IC Potassium, Total, ICAP      | mg/l<br>mg/l   | 1          | p        | ND<br>11      | ND<br>11         | 3.6             | 3.6           | 3.3           | ND<br>3.2     | 5.8           | 5.9           |
| Sodium, Total, ICAP                                 | mg/l           |            |          | 99            | 100              | 41              | 40            | 42            | 42            | 100           | 100           |
| Sulfate                                             | mg/l           | 250        | s        | ND            | ND               | 51              | 65            | 64            | 64            | 44            | 42            |
| Surfactants                                         | mg/l           | 0.5        | s        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Total Nitrate, Nitrite-N, CALC                      | mg/l           | 10         | p        | ND            | ND               | ND              | ND            | ND            | ND            | 12            | 12            |
| Total Organic Carbon                                | mg/l           |            |          | 2.6           | 2.5              | ND              | ND            | ND            | ND            | ND            | ND            |
| Carbon Dioxide                                      | mg/l           |            |          | 4.27          | 4                | 5.51            | 5.06          | 3.3           | 3.05          | 16.6          | 20.1          |
| General Physical                                    |                |            |          | ••            |                  |                 | _             |               |               | _             | _             |
| Apparent Color                                      | ACU            | 15         | S        | 30            | <b>30</b><br>8.2 | 5               | 5             | 5             | 5             | 5             | 5             |
| Lab pH<br>Odor                                      | Units          | 3          | S        | 8.2<br>4      | 8.2              | 7.9<br><b>4</b> | 7.9           | 8.1<br>4      | 8.1           | 7.4<br>4      | 7.3           |
| pH of CaCO3 saturation(25C)                         | Units          | 1 3        | 3        | 7.802         | 7.83             | 7.364           | 7.394         | 7.371         | 7.421         | 6.712         | 6.727         |
| pH of CaCO3 saturation(60C)                         | Units          |            |          | 7.4           | 7.4              | 6.9             | 6.9           | 6.9           | 7             | 6.3           | 6.3           |
| Specific Conductance                                | ımho/cı        | m          |          | 598           | 571              | 541             | 530           | 546           | 519           | 2490          | 2490          |
| Metal                                               |                |            |          |               |                  |                 |               |               |               |               |               |
| Aluminum, Total, ICAP/MS                            | ug/l           | 1000       | p        | ND            | 46               | ND              | ND            | ND            | ND            | ND            | ND            |
| Antimony, Total, ICAP/MS                            | ug/l           | 6          | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Arsenic, Total, ICAP/MS                             | ug/l           | 50         | p        | 20            | 18               | ND<br>40        | ND            | ND            | ND<br>26      | 1.1           | ND            |
| Barium, Total, ICAP/MS<br>Beryllium, Total, ICAP/MS | ug/l<br>ug/l   | 1000       | p<br>p   | 14<br>ND      | 16<br>ND         | 49<br>ND        | 51<br>ND      | 24<br>ND      | 26<br>ND      | 250<br>ND     | 290<br>ND     |
| Chromium, Total, ICAP/MS                            | ug/1           | 50         | р        | 3.6           | ND               | 2.6             | ND            | 2.4           | ND            | 7.6           | 5.5           |
| Hexavalent Chromium (Cr VI)                         | mg/l           | 100        | P        | 3.0           | 1,13             | 2.0             | 1,12          | 2             | 1,12          | 7.0           | 5.5           |
| Cadmium, Total, ICAP/MS                             | ug/l           | 5          | р        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Copper, Total, ICAP/MS                              | ug/l           | 1000       | s        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Lead, Total, ICAP/MS                                | ug/l           | 15         |          | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Nickel, Total, ICAP/MS                              | ug/l           | 100        | p        | ND            | ND               | ND              | ND            | ND            | ND            | 6.4           | 6.7           |
| Selenium, Total, ICAP/MS                            | ug/l           | 50         | p        | ND            | ND               | ND              | ND            | ND            | ND            | 9             | ND            |
| Silver, Total, ICAP/MS Thallium, Total, ICAP/MS     | ug/l<br>ug/l   | 100        | s<br>p   | ND<br>ND      | 0.57<br>ND       | ND<br>ND        | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Zinc, Total, ICAP/MS                                | ug/l           | 5000       |          | ND<br>15      | 10               | ND<br>ND        | ND<br>ND      | ND<br>ND      | ND<br>ND      | 17            | 13            |
| Volatile Organic Compounds                          | ug/1           | 2000       | ,        | 1.0           | 10               | 110             | 110           | 110           | 110           | 1,            | 13            |
| Trichloroethylene (TCE)                             | ug/l           | 5          | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Tetrachloroethylene (PCE)                           | ug/l           | 5          | р        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethylene                                | ug/l           | 6          | р        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| cis-1,2-Dichloroethylene                            | ug/l           | 6          | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Carbon Tetrachloride                                | ug/l           | 0.5        | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethane                                  | ug/l           | 100        | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dichloroethane Fluorotrichloromethane-Freon11   | ug/l<br>ug/l   | 0.5<br>150 | p<br>p   | ND<br>ND      | ND<br>ND         | ND<br>ND        | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| Isopropylbenzene                                    | ug/l           | 130        | b        | ND<br>ND      | ND<br>ND         | ND<br>ND        | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      | ND<br>ND      |
| n-Propylbenzene                                     | ug/l           |            |          | ND            | ND<br>ND         | ND              | ND<br>ND      | ND<br>ND      | ND            | ND<br>ND      | ND            |
| Dichlorodifluoromethane                             | ug/l           |            |          | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Benzene                                             | ug/l           | 1          | р        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Toluene                                             | ug/l           | 1750       | _        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| m,p-Xylenes                                         | ug/l           | 150        | р        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Ethyl benzene                                       | ug/l           | 700        | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| MTBE                                                | ug/L           | 13         | p        | ND            | ND               | ND              | ND            | ND            | ND            | ND            | ND            |
| Perchlorate                                         | ug/l           | 6          | p        |               |                  |                 |               |               |               |               |               |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 5 of 15

| Water Quality Constituents  General Mineral Total Dissolved Solid (TDS) Cation Sum Anion Sum Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity Alkalinity | mg/l<br>meq/l                                | 1000        | ω MCL Type | Gardena<br>#2<br>Zone 1<br>4/12/04 | Gardena<br>#2<br>Zone 1<br>9/26/04 | Gardena<br>#2<br>Zone 2<br>4/12/04 | Gardena<br>#2<br>Zone 2 | Gardena<br>#2<br>Zone 3 | Gardena<br>#2        | Gardena<br>#2        | Gardena<br>#2     | Gardena<br>#2     | Gardena<br>#2        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-------------------------|----------------------|----------------------|-------------------|-------------------|----------------------|
| General Mineral Total Dissolved Solid (TDS) Cation Sum Anion Sum Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity                                        | mg/l<br>meq/l<br>meq/l                       |             |            |                                    |                                    |                                    | Zone 2                  | Zono 2                  |                      |                      |                   |                   |                      |
| Total Dissolved Solid (TDS) Cation Sum Anion Sum Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity                                                        | mg/l<br>meq/l<br>meq/l                       |             |            | 4/12/04                            | 3/20/04                            |                                    | 9/26/04                 | 4/12/04                 | Zone 3<br>9/26/04    | Zone 4<br>4/12/04    | Zone 4<br>9/26/04 | Zone 5<br>4/12/04 | Zone 5<br>9/26/04    |
| Total Dissolved Solid (TDS) Cation Sum Anion Sum Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity                                                        | meq/l<br>meq/l                               | 1000        | s          |                                    |                                    | 4/12/04                            | 3/20/04                 | 4/12/04                 | 3/20/04              | 4/12/04              | 3/20/04           | 4/12/04           | 3/20/04              |
| Cation Sum Anion Sum Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity                                                                                    | meq/l<br>meq/l                               | 1000        | 3          | 330                                | 330                                | 310                                | 320                     | 310                     | 320                  | 230                  | 230               | 320               | 300                  |
| Anion Sum<br>Iron, Total, ICAP<br>Manganese, Total, ICAP/MS<br>Turbidity                                                                                      | meq/l                                        | 1           |            | 6.3                                | 6.23                               | 5.41                               | 5.56                    | 5.63                    | 5.36                 | 4.16                 | 4.21              | 5.45              | 5.42                 |
| Iron, Total, ICAP Manganese, Total, ICAP/MS Turbidity                                                                                                         |                                              |             | Н          | 4.4                                | 5.83                               | 5.67                               | 5.14                    | 5.57                    | 5.05                 | 3.98                 |                   | 5.15              | 5.02                 |
| Manganese, Total, ICAP/MS<br>Turbidity                                                                                                                        |                                              | 0.2         | H          |                                    |                                    |                                    | 0.051                   |                         | 0.074                |                      | 3.88              |                   |                      |
| Turbidity                                                                                                                                                     | mg/l                                         | 0.3         | S          | 0.034                              | 0.029                              | 0.052                              | 53                      | 0.086                   |                      | 0.02                 | 0.02<br>42        | 0.095             | 0.09                 |
|                                                                                                                                                               | ug/l                                         | 50          | S          | 39                                 | 33                                 | 56                                 |                         | 88                      | 82                   | 38                   |                   | 150               | 130                  |
| Alkalinity                                                                                                                                                    | NTU                                          | 5           | s          | 2.1                                | 3.3                                | 0.3                                | 0.25                    | 0.4                     | 0.65                 | 1.4                  | 0.15              | 1.9               | 0.65                 |
|                                                                                                                                                               | mg/l                                         |             | $\vdash$   | 201                                | 274                                | 201                                | 173                     | 198                     | 168                  | 170                  | 165               | 189               | 180                  |
| Boron                                                                                                                                                         | mg/l                                         | _           | ш          | 0.33                               | 0.33                               | 0.17                               | 0.18                    | 0.13                    | 0.13                 | 0.096                | 0.1               | 0.12              | 0.13                 |
| Bicarbonate as HCO3,calculated                                                                                                                                | mg/l                                         |             |            | 244                                | 332                                | 245                                | 210                     | 241                     | 204                  | 207                  | 200               | 230               | 219                  |
| Calcium, Total, ICAP                                                                                                                                          | mg/l                                         | _           | ш          | 17                                 | 16                                 | 37                                 | 38                      | 51                      | 49                   | 32                   | 32                | 45                | 47                   |
| Carbonate as CO3, Calculated                                                                                                                                  | mg/l                                         |             | igspace    | 3.16                               | 5.42                               | 1.59                               | 2.16                    | 1.24                    | 2.1                  | 1.69                 | 2.59              | 1.19              | 2.26                 |
| Hardness (Total, as CaCO3)                                                                                                                                    | mg/l                                         |             | Ш          | 68.8                               | 65.1                               | 142                                | 144                     | 181                     | 172                  | 117                  | 117               | 158               | 163                  |
| Chloride                                                                                                                                                      | mg/l                                         | 250         | s          | 13                                 | 12                                 | 21                                 | 20                      | 21                      | 21                   | 20                   | 20                | 34                | 35                   |
| Fluoride                                                                                                                                                      | mg/l                                         | 2           | p          | 0.25                               | 0.23                               | 0.27                               | 0.26                    | 0.37                    | 0.36                 | 0.28                 | 0.27              | 0.3               | 0.29                 |
| Hydroxide as OH, Calculated                                                                                                                                   | mg/l                                         |             |            | 0.03                               | 0.04                               | 0.02                               | 0.03                    | 0.01                    | 0.03                 | 0.02                 | 0.03              | 0.01              | 0.03                 |
| Langelier Index - 25 degree                                                                                                                                   | None                                         |             | $\Box$     | 0.47                               | 0.68                               | 0.51                               | 0.66                    | 0.54                    | 0.75                 | 0.48                 | 0.66              | 0.47              | 0.77                 |
| Magnesium, Total, ICAP                                                                                                                                        | mg/l                                         |             |            | 6.4                                | 6.1                                | 12                                 | 12                      | 13                      | 12                   | 9                    | 9                 | 11                | 11                   |
| Mercury                                                                                                                                                       | ug/l                                         | 2           | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Nitrate-N by IC                                                                                                                                               | mg/l                                         | 10          | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Nitrite, Nitrogen by IC                                                                                                                                       | mg/l                                         | 1           | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Potassium, Total, ICAP                                                                                                                                        | mg/l                                         |             |            | 5.5                                | 5.5                                | 5.5                                | 5.8                     | 3.7                     | 3.7                  | 3.1                  | 3.2               | 3.1               | 3.2                  |
| Sodium, Total, ICAP                                                                                                                                           | mg/l                                         |             | П          | 110                                | 110                                | 56                                 | 58                      | 44                      | 42                   | 40                   | 41                | 51                | 48                   |
| Sulfate                                                                                                                                                       | mg/l                                         | 250         | s          | ND                                 | ND                                 | 50                                 | 53                      | 48                      | 52                   | ND                   | ND                | 19                | 20                   |
| Surfactants                                                                                                                                                   | mg/l                                         | 0.5         | S          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Total Nitrate, Nitrite-N, CALC                                                                                                                                | mg/l                                         | 10          | р          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Total Organic Carbon                                                                                                                                          | mg/l                                         | 10          | P          | 3.3                                | 2.9                                | 0.9                                | 0.5                     | ND                      | ND                   | 0.7                  | 0.5               | 0.5               | ND                   |
| Carbon Dioxide                                                                                                                                                | mg/l                                         |             | Н          | 2.45                               | 2.64                               | 4.9                                | 2.65                    | 6.07                    | 2.57                 | 3.29                 | 2                 | 5.79              | 2.76                 |
| General Physical                                                                                                                                              | mg/1                                         |             | $\vdash$   | 2.43                               | 2.04                               | 4.2                                | 2.03                    | 0.07                    | 2.51                 | 3.27                 |                   | 3.17              | 2.70                 |
|                                                                                                                                                               | ACU                                          | 15          | s          | 30                                 | 25                                 | 10                                 | 5                       | 5                       | 3                    | 5                    | 3                 | 5                 | 3                    |
| Apparent Color                                                                                                                                                | _                                            | 13          | 8          | 8.3                                | 8.4                                | 8                                  | 8.2                     | 7.9                     |                      | 8.1                  | 8.3               |                   | 8.2                  |
| Lab pH                                                                                                                                                        | Units                                        | 2           | ш          |                                    |                                    |                                    | 2                       |                         | 8.2                  |                      | 8.3               | 7.9               | 2                    |
| Odor                                                                                                                                                          | TON                                          | 3           | S          | 8                                  | 3                                  | 7.400                              |                         | 4 7.255                 |                      | 8 7.624              | -                 | 8                 |                      |
| pH of CaCO3 saturation(25C)                                                                                                                                   | Units                                        | ⊢           | ш          | 7.827                              | 7.72                               | 7.488                              | 7.543                   | 7.355                   | 7.445                | 7.624                | 7.639             | 7.43              | 7.432                |
| pH of CaCO3 saturation(60C)                                                                                                                                   | Units                                        |             | $\vdash$   | 7.4                                | 7.3                                | 7                                  | 7.1                     | 6.9                     | 7                    | 7.2                  | 7.2               | 7                 | 7                    |
| Specific Conductance                                                                                                                                          | ımho/cn                                      | n           | ш          | 576                                | 490                                | 533                                | 449                     | 514                     | 434                  | 398                  | 340               | 529               | 462                  |
| Metal                                                                                                                                                         |                                              |             | ш          |                                    |                                    |                                    |                         |                         |                      |                      |                   |                   |                      |
| Aluminum, Total, ICAP/MS                                                                                                                                      | ug/l                                         | 1000        | 1          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Antimony, Total, ICAP/MS                                                                                                                                      | ug/l                                         | 6           | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Arsenic, Total, ICAP/MS                                                                                                                                       | ug/l                                         | 50          | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | 1                 | ND                   |
| Barium, Total, ICAP/MS                                                                                                                                        | ug/l                                         | 1000        | p          | 21                                 | 22                                 | 17                                 | 19                      | 18                      | 19                   | 55                   | 61                | 61                | 62                   |
| Beryllium, Total, ICAP/MS                                                                                                                                     | ug/l                                         | 4           | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Chromium, Total, ICAP/MS                                                                                                                                      | ug/l                                         | 50          | p          | ND                                 | 3.9                                | ND                                 | 2.7                     | ND                      | 2.4                  | ND                   | 2.5               | ND                | 1.8                  |
| Hexavalent Chromium (Cr VI)                                                                                                                                   | mg/l                                         |             |            | ND                                 |                                    | ND                                 |                         | ND                      |                      | ND                   |                   | ND                |                      |
| Cadmium, Total, ICAP/MS                                                                                                                                       | ug/l                                         | 5           | р          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Copper, Total, ICAP/MS                                                                                                                                        | ug/l                                         | 1000        | _          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Lead, Total, ICAP/MS                                                                                                                                          | ug/l                                         | 1.5         | П          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Nickel, Total, ICAP/MS                                                                                                                                        | ug/l                                         | 100         | р          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Selenium, Total, ICAP/MS                                                                                                                                      | ug/l                                         | 50          | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Silver, Total, ICAP/MS                                                                                                                                        | ug/1                                         | 100         | S          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Thallium, Total, ICAP/MS                                                                                                                                      | ug/l                                         | 2           | р          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Zinc, Total, ICAP/MS                                                                                                                                          | ug/l                                         | 5000        | <b>-</b>   | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Volatile Organic Compounds                                                                                                                                    | ug/1                                         | 5000        | ,          | 110                                | 110                                | T.D                                | I I                     | 110                     | T.D                  | 110                  | T\D               | 110               | 140                  |
| Trichloroethylene (TCE)                                                                                                                                       | ug/l                                         | 5           | р          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Tetrachloroethylene (PCE)                                                                                                                                     |                                              | 5           | -          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                |                   | ND                   |
|                                                                                                                                                               | ug/l                                         | -           | p          |                                    |                                    | ND<br>ND                           |                         |                         | ND<br>ND             | ND<br>ND             |                   | ND<br>ND          | ND<br>ND             |
| 1,1-Dichloroethylene                                                                                                                                          | ug/l                                         | 6           | p          | ND                                 | ND                                 |                                    | ND                      | ND<br>ND                |                      |                      | ND<br>ND          |                   |                      |
| cis-1,2-Dichloroethylene                                                                                                                                      | ug/l                                         | 6           | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| Carbon Tetrachloride                                                                                                                                          | ug/l                                         | 0.5         | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1.1 D: 11 3                                                                                                                                                   | ug/l                                         | 100         | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,1-Dichloroethane                                                                                                                                            | ug/l                                         | 0.5         | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,2-Dichloroethane                                                                                                                                            |                                              | 150         | p          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11                                                                                                          | ug/l                                         | _           |            | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11<br>Isopropylbenzene                                                                                      | ug/l                                         |             | ш          |                                    |                                    | NTD.                               | ND                      | ND                      | ND                   | ND                   | ND                | ND                | NID                  |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11                                                                                                          | _                                            |             |            | ND                                 | ND                                 | ND                                 | ND                      | HD                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11<br>Isopropylbenzene                                                                                      | ug/l                                         |             |            | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND                      | ND                      | ND                   | ND                   | ND                | ND<br>ND          | ND<br>ND             |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11<br>Isopropylbenzene<br>n-Propylbenzene                                                                   | ug/l<br>ug/l                                 | 1           | p          |                                    |                                    |                                    |                         |                         |                      |                      |                   |                   |                      |
| 1,2-Dichloroethane<br>Fluorotrichloromethane-Freon11<br>Isopropylbenzene<br>n-Propylbenzene<br>Dichlorodifluoromethane                                        | ug/l<br>ug/l<br>ug/l                         | 1<br>1750   | _          | ND                                 | ND                                 | ND                                 | ND                      | ND                      | ND                   | ND                   | ND                | ND                | ND                   |
| 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene                                    | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l         | <u> </u>    | p          | ND<br>ND<br>ND                     | ND<br>ND<br>ND                     | ND<br>ND                           | ND<br>ND<br>ND          | ND<br>ND<br>ND          | ND<br>ND             | ND<br>ND<br>ND       | ND<br>ND<br>ND    | ND<br>ND          | ND<br>ND<br>ND       |
| 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene m,p-Xylenes                        | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 1750<br>150 | p<br>p     | ND<br>ND<br>ND<br>ND               | ND<br>ND<br>ND<br>ND               | ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND    | ND<br>ND<br>ND<br>ND    | ND<br>ND<br>ND<br>ND | ND<br>ND             | ND<br>ND<br>ND    | ND<br>ND<br>ND    | ND<br>ND<br>ND<br>ND |
| 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene                                    | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l         | 1750        | p<br>p     | ND<br>ND<br>ND                     | ND<br>ND<br>ND                     | ND<br>ND<br>ND                     | ND<br>ND<br>ND          | ND<br>ND<br>ND          | ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND    | ND<br>ND<br>ND    | ND<br>ND<br>ND       |

### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004**

Page 6 of 15

| Water Quartify Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |         |      |        |         |         | 1 450   | 0 01 1  |         |         |         |         |         |         |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Second    |                                |         |      |        | Haw-    |
| Center Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |         |      | be     | thorne  |
| Center Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Quality Constituents     |         |      | Ty     | #1      | #1      | #1      | #1      | #1      | #1      | #1      | #1      | #1      | #1      | #1      | #1      |
| General Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | its     | 占    | CL     | Zone 1  | Zone 1  | Zone 2  | Zone 2  | Zone 3  | Zone 3  | Zone 4  | Zone 4  | Zone 5  | Zone 5  |         | Zone 6  |
| Trad Disorderla Solid (TTRS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | ū       | Ž    | Ň      | 4/20/04 | 9/20/04 | 4/20/04 | 9/20/04 | 4/20/04 | 9/20/04 | 4/20/04 | 9/20/04 | 4/20/04 | 9/20/04 | 4/20/04 | 9/20/04 |
| Genero (Series Some)   mospi   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |         |      |        |         |         |         |         |         |         |         |         |         |         |         |         |
| Ameria Remon money   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Dissolved Solid (TDS)    | mg/l    | 1000 | s      | 900     | 910     | 810     | 810     | 600     | 590     | 460     | 810     | 920     | 890     | 2050    | 2100    |
| Tends   Tend   | Cation Sum                     | meq/l   |      |        | 15.4    | 16.2    | 13.5    | 14      | 11      | 11      | 8.01    | 14      | 15.3    | 13.2    | 34.2    | 32.7    |
| Magnanes, Tool, KAPANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anion Sum                      | meq/1   |      |        | 15.3    | 14.9    | 13.7    | 13.1    | 10.5    | 10.3    | 7.76    | 13.2    | 16.2    | 13.8    | 36.1    | 33.7    |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iron, Total, ICAP              | mg/l    | 0.3  | s      | 0.16    | 0.19    | 0.15    | 0.13    | 0.21    | 0.22    | 0.056   | 0.12    | 0.026   | 0.025   | 0.12    | 0.096   |
| Alzalaniny   mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese, Total, ICAP/MS      | ug/l    | 50   | s      | 15      | 15      | 56      | 53      | 74      | 78      | 42      | 55      | 160     | 170     | 630     | 760     |
| Boom   Mary      | Turbidity                      | NTU     | 5    | s      | 2.9     | 1.1     | 1.4     | 4.8     | 0.5     | 0.75    | 0.6     | 3       | 0.2     | 0.3     | 6.6     | 3.6     |
| Bicarbonnae art RCOLockockolandam   mgrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alkalinity                     | mg/l    |      |        | 698     | 682     | 626     | 596     | 463     | 447     | 315     | 600     | 216     | 189     | 320     | 293     |
| Cachemin, Total, ICAP   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boron                          | mg/l    |      |        | 1.5     | 1.6     | 1.1     | 1.1     | 0.55    | 0.6     | 0.39    | 1.1     | 0.19    | 0.14    | 0.36    | 0.34    |
| Carbonate as COS, Calculated   mgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bicarbonate as HCO3,calculated | mg/l    |      |        | 849     | 830     | 760     | 724     | 563     | 544     | 384     | 728     | 263     | 230     | 390     | 357     |
| Hardenset (Total, ac (aCO3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calcium, Total, ICAP           | mg/l    |      |        | 16      | 18      | 13      | 15      | 35      | 36      | 39      | 15      | 130     | 110     | 290     | 280     |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbonate as CO3, Calculated   | mg/l    |      |        | 6.95    | 6.79    | 9.85    | 9.39    | 5.8     | 4.45    | 1.98    | 9.44    | 0.857   | 1.49    | 0.637   | 1.16    |
| Filterside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hardness (Total, as CaCO3)     | mg/l    |      |        | 93.5    | 107     | 68.3    | 75.3    | 182     | 185     | 172     | 74.5    | 514     | 439     | 1090    | 1040    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloride                       | mg/l    | 250  | s      | 47      | 46      | 43      | 41      | 44      | 47      | 51      | 43      | 370     | 320     | 610     | 580     |
| Langelier Index: 25 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluoride                       | mg/l    | 2    | p      | 0.12    | 0.11    | 0.26    | 0.24    | 0.23    | 0.21    | 0.38    | 0.24    | 0.29    | 0.29    | 0.26    | 0.22    |
| Magnesium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hydroxide as OH, Calculated    | mg/l    |      |        | 0.02    | 0.02    | 0.03    | 0.03    | 0.03    | 0.02    | 0.01    | 0.03    | 0.009   | 0.02    | 0.004   | 0.009   |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Langelier Index - 25 degree    | None    |      |        |         |         | 0.85    | 0.89    | 1       | 0.95    | 0.63    | 0.89    | 0.79    | 0.96    | 1       |         |
| Namara    | Magnesium, Total, ICAP         | mg/l    |      |        | 13      | 15      | 8.7     | 9.2     | 23      | 23      | 18      | 9       | 46      | 40      | 89      | 82      |
| Ninte, Nintegen by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mercury                        | ug/l    | 2    | p      | ND      |
| Nintrice N   | Nitrate-N by IC                | mg/l    | 10   | p      | ND      |         | ND      |         | ND      |
| Sadium, Total, ICAP  Safiar  S | Nitrite, Nitrogen by IC        |         | 1    | p      | ND      |         | ND      | ND      | ND      | ND      | ND      |         |         |         |         |         |
| Sufface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Potassium, Total, ICAP         | mg/l    |      |        | 20      | 23      | 14      | 14      | 14      | 15      | 9.1     | 14      | 7.7     | 7       | 7.8     | 7.5     |
| Surfacians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sodium, Total, ICAP            | mg/l    |      |        | 300     | 310     | 270     | 280     | 160     | 160     | 100     | 280     | 110     | 97      | 280     | 270     |
| Total Driganic Carboon   mgr   10   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulfate                        | mg/l    | 250  | s      | ND      | 67      | 47      | 590     | 550     |
| Total Craganic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surfactants                    | mg/l    | 0.5  | s      | ND      | 0.135   | 0.2     |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Nitrate, Nitrite-N, CALC | mg/l    | 10   | p      | ND      | 2       | ND      |
| General Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Organic Carbon           | mg/l    |      |        | 13.8    | 14.3    | 13.6    | 12.2    | 4.9     | 4.5     | 2.9     | 13.5    | 1.2     | 0.8     | 2.6     | 2.4     |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbon Dioxide                 | mg/l    |      |        | 13.5    | 13.2    | 7.62    | 7.26    | 7.1     | 8.64    | 9.67    | 7.3     | 10.5    | 4.6     | 31.1    | 14.2    |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General Physical               |         |      |        |         |         |         |         |         |         |         |         |         |         |         |         |
| Odder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apparent Color                 | ACU     | 15   | s      | 200     | 250     | 200     | 250     | 35      | 50      | 20      | 250     | 5       | 5       | 5       | 5       |
| PIFO CACO Saturation (25C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab pH                         | Units   |      |        | 8.1     | 8.1     | 8.3     | 8.3     | 8.2     | 8.1     | 7.9     | 8.3     | 7.7     | 8       | 7.4     | 7.7     |
| PH of CaCO3 saturation(60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Odor                           | TON     | 3    | s      | 4       | 2       | 4       | 2       | 4       | 1       | 8       | 4       | 17      | 4       | 17      | 17      |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pH of CaCO3 saturation(25C)    | Units   |      |        | 7.312   | 7.271   | 7.45    | 7.409   | 7.15    | 7.153   | 7.27    | 7.407   | 6.911   | 7.042   | 6.392   | 6.445   |
| Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH of CaCO3 saturation(60C)    | Units   |      |        | 6.9     | 6.8     | 7       | 7       | 6.7     | 6.7     | 6.8     | 7       | 6.5     | 6.6     | 5.9     | 6       |
| Adminimum, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific Conductance           | ımho/cı | n    |        | 1400    | 1420    | 1260    | 1280    | 969     | 993     | 739     | 1290    | 1570    | 1410    | 3110    | 3100    |
| Antimony, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metal                          |         |      |        |         |         |         |         |         |         |         |         |         |         |         |         |
| Arsenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aluminum, Total, ICAP/MS       | ug/l    | 1000 | p      | ND      |
| Barium, Total, ICAPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Antimony, Total, ICAP/MS       | ug/l    | 6    | p      | ND      |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic, Total, ICAP/MS        | ug/l    | 50   | p      | ND      | ND      | 1.1     | ND      | ND      | ND      | ND      | ND      | 2       | ND      | 6.2     | 2.5     |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barium, Total, ICAP/MS         | ug/l    | 1000 | p      | 30      | 33      | 24      | 26      | 30      | 35      | 30      | 28      | 130     | 120     | 56      | 53      |
| Hexavalent Chromium (Cr VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Beryllium, Total, ICAP/MS      | ug/l    | 4    | p      | ND      |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chromium, Total, ICAP/MS       | ug/l    | 50   | p      | ND      | ND      | 1.2     | 1.2     | 6.1     | ND      | 4       | 1.2     | 3       | 1.3     | 5.4     | 4.1     |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hexavalent Chromium (Cr VI)    | mg/l    |      |        |         |         |         |         |         |         |         |         |         |         |         |         |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | ug/l    | 5    | p      | ND      |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | ug/l    | -    | s      |         | ND      | ND      | -       |         | ND      | ND      |         | ND      | ND      |         | ND      |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead, Total, ICAP/MS           | ug/l    | 15   | Ĺ      | ND      |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel, Total, ICAP/MS         | ug/l    | 100  | p      | ND      | 9.2     | 13      |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selenium, Total, ICAP/MS       | ug/l    | 50   | p      | ND      | 5.2     | ND      |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |         | 100  | s      | ND      |         | ND      | ND      | ND      |         | ND      |         |         | ND      |         | ND      |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thallium, Total, ICAP/MS       | ug/l    | 2    | p      | ND      |
| Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zinc, Total, ICAP/MS           | ug/l    | 5000 | s      | 5.7     | 6.3     | 6.5     | ND      | ND      | 5.8     | ND      | ND      | ND      | ND      | 5.3     | 11      |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |         |      | $\Box$ |         |         |         |         |         |         |         |         |         |         |         |         |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | ug/l    | 5    | p      | ND      | 17      | 17      |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tetrachloroethylene (PCE)      | ug/l    | 5    | p      | ND      |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloroethylene           | ug/l    | 6    | p      | ND      | 1.02    | 1.1     |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cis-1,2-Dichloroethylene       | ug/l    | 6    | p      | ND      |
| 1,2-Dichloroethane         ug/l         0.5         p         ND         ND <td>Carbon Tetrachloride</td> <td>ug/l</td> <td>0.5</td> <td>p</td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbon Tetrachloride           | ug/l    | 0.5  | p      | ND      |
| Fluorotrichloromethane-Freon  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane             | ug/l    | 100  | p      | ND      |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloroethane             | ug/l    | 0.5  | p      | ND      |
| n-Propylbenzene         ug/l         l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluorotrichloromethane-Freon11 | ug/l    | 150  | p      | ND      | 7.33    | 7       |
| Dichlorodifluoromethane   Ug/l   V   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isopropylbenzene               | ug/l    |      |        | ND      |
| Benzene   ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n-Propylbenzene                | ug/l    |      |        | ND      |
| Benzene   ug/l   1   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dichlorodifluoromethane        | ug/l    |      |        | ND      | 1.73    | 2.2     |
| Toluene         ug/l         1750         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzene                        |         | 1    | p      | ND      |
| m.p-Xylenes         ug/l         150         p         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                        |         | 1750 | _      | ND      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         | _    | _      |         |         |         |         |         |         |         |         |         |         |         |         |
| MTBE ug/L 13 p ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |      | -      |         |         |         |         |         |         | ND      |         |         | ND      |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         | -    | _      |         |         |         |         |         |         |         | ND      |         |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         | _    | _      |         |         |         |         |         |         | İ       |         |         |         | i       |         |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 7 of 15

| Water Quality Constituents                      |              |            | Type   | Inglewood<br>#1   | Inglewood #1     | Inglewood<br>#1   | Inglewood<br>#1   | Inglewood<br>#1   | Inglewood<br>#1   | Inglewood<br>#1   | Inglewood<br>#1   |
|-------------------------------------------------|--------------|------------|--------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                 | Units        | MCL        | MCL    | Zone 1<br>3/18/04 | Zone 1<br>9/2/04 | Zone 3<br>5/11/04 | Zone 3<br>9/28/04 | Zone 4<br>5/11/04 | Zone 4<br>9/28/04 | Zone 5<br>5/11/04 | Zone 5<br>9/28/04 |
| General Mineral                                 |              |            | Ž.     | 5,13,01           | 7,2,01           | 5,11/01           | 7/20/01           | 5,11/01           | 7,23,01           | 5,11/01           | J. 20/01          |
| Total Dissolved Solid (TDS)                     | mg/l         | 1000       | s      | 2580              | 2750             | 960               | 990               | 720               | 740               | 1070              | 1130              |
| Cation Sum                                      | meq/l        |            |        | 43.9              | 44.1             | 16.5              | 16.4              | 12.2              | 12.1              | 18.3              | 17.7              |
| Anion Sum                                       | meq/l        |            |        | 48                | 43.7             | 15.9              | 16.8              | 12.1              | 12.6              | 17.6              | 18.8              |
| Iron, Total, ICAP                               | mg/l         | 0.3        | S      | 0.96              | 1.1              | 0.35              | 0.34              | 0.33              | 0.32              | ND                | ND                |
| Manganese, Total, ICAP/MS                       | ug/l         | 50         | S      | 36                | 30               | 260               | 270               | 180               | 190               | ND<br>0.45        | 4.3               |
| Turbidity Alkalinity                            | NTU<br>mg/l  | 3          | S      | 1.5               | 4.4<br>850       | 1.5               | 1.5<br>292        | 1.3<br>225        | 1.4<br>217        | 0.45<br>279       | 1.4<br>268        |
| Boron                                           | mg/l         |            |        | 4.9               | 5.1              | 0.42              | 0.43              | 0.2               | 0.22              | 0.28              | 0.28              |
| Bicarbonate as HCO3.calculated                  | mg/l         |            |        | 1250              | 1040             | 369               | 356               | 274               | 264               | 340               | 327               |
| Calcium, Total, ICAP                            | mg/l         |            |        | 150               | 140              | 110               | 110               | 92                | 92                | 170               | 160               |
| Carbonate as CO3, Calculated                    | mg/l         |            |        | 6.45              | 4.26             | 0.758             | 0.921             | 0.892             | 0.86              | 0.35              | 0.337             |
| Hardness (Total, as CaCO3)                      | mg/l         |            |        | 585               | 551              | 448               | 444               | 394               | 390               | 647               | 618               |
| Chloride                                        | mg/l         | 250        | s      | 920               | 900              | 260               | 290               | 210               | 230               | 320               | 360               |
| Fluoride                                        | mg/l         | 2          | p      | 0.29              | 0.28             | 0.52              | 0.51              | 0.42              | 0.41              | 0.25              | 0.24              |
| Hydroxide as OH, Calculated                     | mg/l         |            |        | 0.01              | 0.01             | 0.005             | 0.007             | 0.009             | 0.009             | 0.003             | 0.003             |
| Langelier Index - 25 degree                     | None         |            |        | 51                | 1.5              | 0.66<br>42        | 0.75<br>41        | 0.66<br>40        | 0.64<br>39        | 0.52<br>54        | 0.47<br>53        |
| Magnesium, Total, ICAP<br>Mercury               | mg/l<br>ug/l | 2          | р      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Nitrate-N by IC                                 | mg/l         | 10         | р      | ND                | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND                | ND<br>ND          | 6.8               | 7.6               |
| Nitrite, Nitrogen by IC                         | mg/l         | 1          | р      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Potassium, Total, ICAP                          | mg/l         | Ė          | ŕ      | 18                | 18               | 6.8               | 6.8               | 9.1               | 9.3               | 6.2               | 6.5               |
| Sodium, Total, ICAP                             | mg/l         |            |        | 730               | 750              | 170               | 170               | 93                | 94                | 120               | 120               |
| Sulfate                                         | mg/l         | 250        | s      | 70                | 60               | 120               | 130               | 78                | 85                | 120               | 130               |
| Surfactants                                     | mg/l         | 0.5        | s      | 0.061             | 0.069            | ND                | ND                | ND                | ND                | ND                | 0.069             |
| Total Nitrate, Nitrite-N, CALC                  | mg/l         | 10         | p      | ND                | ND               | ND                | ND                | ND                | ND                | 6.8               | 7.6               |
| Total Organic Carbon                            | mg/l         |            |        | 43                | 40               | 1.2               | 1.1               | 0.7               | 0.7               | 0.9               | 0.9               |
| Carbon Dioxide General Physical                 | mg/l         |            |        | 31.5              | 33               | 23.3              | 17.9              | 10.9              | 10.5              | 42.9              | 41.3              |
| Apparent Color                                  | ACU          | 15         | s      | 200               | 175              | 10                | 10                | 5                 | 10                | 3                 | 3                 |
| Lab pH                                          | Units        | 13         | 3      | 7.9               | 7.8              | 7.5               | 7.6               | 7.7               | 7.7               | 7.2               | 7.2               |
| Odor                                            | TON          | 3          | s      | 17                | 8                | 3                 | 2                 | 3                 | 2                 | 3                 | 2                 |
| pH of CaCO3 saturation(25C)                     | Units        |            |        | 6.172             | 6.282            | 6.837             | 6.852             | 7.043             | 7.06              | 6.683             | 6.726             |
| pH of CaCO3 saturation(60C)                     | Units        |            |        | 5.7               | 5.8              | 6.4               | 6.4               | 6.6               | 6.6               | 6.2               | 6.3               |
| Specific Conductance                            | ımho/cı      | n          |        | 4460              | 4140             | 1600              | 1590              | 1240              | 1230              | 1780              | 1760              |
| Metal                                           |              |            |        |                   |                  |                   |                   |                   |                   |                   |                   |
| Aluminum, Total, ICAP/MS                        | ug/l         | 1000       | _      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Antimony, Total, ICAP/MS                        | ug/l         | 50         | p      | ND<br>ND          | ND<br>10         | ND<br>ND          | ND<br>1.8         | ND<br>ND          | ND<br>1.6         | ND<br>ND          | ND<br>ND          |
| Arsenic, Total, ICAP/MS Barium, Total, ICAP/MS  | ug/l<br>ug/l | 50<br>1000 | p<br>p | 210               | 210              | 34                | 37                | 96                | 98                | 190               | 210               |
| Beryllium, Total, ICAP/MS                       | ug/l         | 4          | р      | ND                | ND ND            | ND                | ND                | ND                | ND                | ND                | ND                |
| Chromium, Total, ICAP/MS                        | ug/l         | 50         | р      | ND                | ND               | 15                | 2.1               | 9.9               | 2.5               | 16                | 2.7               |
| Hexavalent Chromium (Cr VI)                     | mg/l         |            |        |                   |                  |                   |                   |                   |                   |                   |                   |
| Cadmium, Total, ICAP/MS                         | ug/l         | 5          | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Copper, Total, ICAP/MS                          | ug/l         | 1000       | s      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Lead, Total, ICAP/MS                            | ug/l         | 15         |        | 1.4               | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Nickel, Total, ICAP/MS                          | ug/l         | 100        | p      | ND                | ND               | 5.2               | ND                | ND                | ND                | 7.6               | 6.8               |
| Selenium, Total, ICAP/MS                        | ug/l         | 50         | p      | ND                | ND<br>ND         | 12<br>ND          | ND<br>ND          | 6.4               | ND<br>ND          | 14                | ND<br>ND          |
| Silver, Total, ICAP/MS Thallium, Total, ICAP/MS | ug/l<br>ug/l | 100        | s<br>p | ND<br>ND          | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | 0.82<br>ND        | ND<br>ND          |
| Zinc, Total, ICAP/MS                            | ug/l         | 5000       | _      | ND                | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | 5.9               | ND<br>ND          | ND<br>ND          |
| Volatile Organic Compounds                      | ug/1         | 5500       | 3      | ND                | 140              | 14D               | 110               | 110               | 5.7               | 1412              | 110               |
| Trichloroethylene (TCE)                         | ug/l         | 5          | р      | 12                | 6.4              | ND                | ND                | ND                | ND                | 15                | 9.2               |
| Tetrachloroethylene (PCE)                       | ug/l         | 5          | p      | 1                 | 0.5              | ND                | ND                | ND                | ND                | 1.5               | 1                 |
| 1,1-Dichloroethylene                            | ug/l         | 6          | p      | 0.9               | 0.5              | ND                | ND                | ND                | ND                | 1.3               | 1.1               |
| cis-1,2-Dichloroethylene                        | ug/l         | 6          | p      | 0.9               | 0.7              | ND                | ND                | ND                | ND                | ND                | ND                |
| Carbon Tetrachloride                            | ug/l         | 0.5        | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| 1,1-Dichloroethane                              | ug/l         | 100        | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| 1,2-Dichloroethane                              | ug/l         | 0.5        | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Fluorotrichloromethane-Freon11                  | ug/l         | 150        | p      | ND<br>ND          | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          |
| Isopropylbenzene<br>n-Propylbenzene             | ug/l<br>ug/l |            |        | ND                | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          |
| Dichlorodifluoromethane                         | ug/l         |            |        | ND                | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND                | ND<br>ND          | ND<br>ND          | ND<br>ND          |
| Benzene                                         | ug/l         | 1          | р      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Toluene                                         | ug/l         | 1750       | _      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| m,p-Xylenes                                     | ug/l         | 150        | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Ethyl benzene                                   | ug/l         | 700        | p      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| MTBE                                            | ug/L         | 13         | р      | ND                | ND               | ND                | ND                | ND                | ND                | ND                | ND                |
| Perchlorate                                     | ug/l         | 6          | p      |                   |                  |                   |                   |                   |                   |                   |                   |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004 Page 8 of 15**

|                                                 |              |      |          |                   |                   | Page 8            | J1 10             |                   |                   |                   |                   |                   |                   |
|-------------------------------------------------|--------------|------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Water Quality Constituents                      |              |      | MCL Type | Lomita<br>#1      |
|                                                 | Units        | MCL  | MCL      | Zone 1<br>4/27/04 | Zone 1<br>9/13/04 | Zone 2<br>4/27/04 | Zone 2<br>9/13/04 | Zone 3<br>4/27/04 | Zone 3<br>9/13/04 | Zone 4<br>4/27/04 | Zone 4<br>9/14/04 | Zone 5<br>4/27/04 | Zone 5<br>9/14/04 |
| General Mineral                                 | _            |      | į.       | 1/2//01           | <i>311310</i> 1   | 1/2//01           | <i>7/15/01</i>    | 1127701           | <i>7/15/01</i>    | 1/2//01           | <i>3/11/01</i>    | 1/2//01           | 2/11/01           |
| Total Dissolved Solid (TDS)                     | mg/l         | 1000 | s        | 1480              | 1730              | 930               | 930               | 790               | 830               | 580               | 570               | 1300              | 1430              |
| Cation Sum                                      | meq/l        |      |          | 22.5              | 21.5              | 15.2              | 14.4              | 13.6              | 14                | 10.3              | 9.96              | 19.7              | 19.7              |
| Anion Sum                                       | meq/l        |      |          | 23.8              | 22.9              | 15.1              | 15.6              | 13.7              | 14.5              | 9.74              | 9.39              | 21                | 20.6              |
| Iron, Total, ICAP                               | mg/l         | 0.3  | s        | 0.021             | 0.12              | 0.012             | ND                | 0.022             | ND                | ND                | ND                | 0.09              | 0.1               |
| Manganese, Total, ICAP/MS                       | ug/l         | 50   | S        | 330               | 300               | 140               | 140               | 120               | 130               | 85                | 72                | 250               | 240               |
| Turbidity                                       | NTU          | 5    | S        | 0.35<br>258       | 0.75<br>243       | 1.4               | 3.2<br>233        | 1.3               | 1.1<br>273        | 0.9               | 0.9               | 0.5<br>257        | 0.4<br>242        |
| Alkalinity<br>Boron                             | mg/l<br>mg/l |      |          | 0.76              | 0.7               | 0.44              | 0.44              | 0.44              | 0.44              | 0.38              | 0.36              | 0.61              | 0.6               |
| Bicarbonate as HCO3,calculated                  | mg/l         |      |          | 314               | 296               | 303               | 284               | 354               | 332               | 291               | 270               | 313               | 295               |
| Calcium, Total, ICAP                            | mg/l         |      |          | 150               | 150               | 100               | 97                | 81                | 88                | 60                | 56                | 140               | 140               |
| Carbonate as CO3, Calculated                    | mg/l         |      |          | 1.29              | 0.964             | 2.48              | 1.47              | 3.65              | 1.71              | 2.38              | 2.78              | 1.62              | 1.21              |
| Hardness (Total, as CaCO3)                      | mg/l         |      |          | 539               | 535               | 373               | 358               | 297               | 319               | 220               | 206               | 510               | 510               |
| Chloride                                        | mg/l         | 250  | s        | 650               | 640               | 340               | 370               | 270               | 310               | 170               | 170               | 550               | 560               |
| Fluoride                                        | mg/l         | 2    | p        | 0.1               | 0.09              | 0.15              | 0.09              | 0.16              | 0.14              | 0.22              | 0.22              | 0.1               | 0.09              |
| Hydroxide as OH, Calculated                     | mg/l         |      |          | 0.01              | 0.009             | 0.02              | 0.01              | 0.03              | 0.01              | 0.02              | 0.03              | 0.01              | 0.01              |
| Langelier Index - 25 degree                     | None         |      |          | 1                 | 0.9               | 1.1               | 0.9               | 1.2               | 0.92              | 0.9               | 0.93              | 1.1               | 0.97              |
| Magnesium, Total, ICAP<br>Mercury               | mg/l         | 2    | -        | 40<br>ND          | 39<br>ND          | 30<br>ND          | 28<br>ND          | 23<br>ND          | 24<br>ND          | 17<br>ND          | 16<br>ND          | 39<br>ND          | 39<br>ND          |
| Nitrate-N by IC                                 | ug/l<br>mg/l | 10   | p<br>p   | ND<br>ND          |
| Nitrite, Nitrogen by IC                         | mg/l         | 10   | р        | ND                |
| Potassium, Total, ICAP                          | mg/l         |      | r        | 14                | 14                | 12                | 12                | 9.8               | 10                | 8                 | 7.6               | 13                | 13                |
| Sodium, Total, ICAP                             | mg/l         |      |          | 260               | 240               | 170               | 160               | 170               | 170               | 130               | 130               | 210               | 210               |
| Sulfate                                         | mg/l         | 250  | s        | 13                | ND                | 27                | 25                | 12                | 12                | 7.4               | 7.1               | 17                | ND                |
| Surfactants                                     | mg/l         | 0.5  | s        | ND                | 0.07              |
| Total Nitrate, Nitrite-N, CALC                  | mg/l         | 10   | p        | ND                |
| Total Organic Carbon                            | mg/l         |      |          | 0.9               | 0.8               | 2.9               | 1.6               | 1.6               | 2.6               | 2.4               | 2.3               | 1                 | 0.8               |
| Carbon Dioxide General Physical                 | mg/l         | -    |          | 9.95              | 11.8              | 4.81              | 7.15              | 4.47              | 8.36              | 4.62              | 3.41              | 7.88              | 9.35              |
| Apparent Color                                  | ACU          | 15   | s        | 3                 | 5                 | 10                | 10                | 20                | 15                | 20                | 30                | 3                 | 5                 |
| Lab pH                                          | Units        | 13   | 3        | 7.8               | 7.7               | 8.1               | 7.9               | 8.2               | 7.9               | 8.1               | 8.2               | 7.9               | 7.8               |
| Odor                                            | TON          | 3    | S        | 8                 | 17                | 8                 | 8                 | 4                 | 17                | 8                 | 8                 | 4                 | 8                 |
| pH of CaCO3 saturation(25C)                     | Units        |      |          | 6.772             | 6.798             | 6.964             | 7.005             | 6.988             | 6.979             | 7.203             | 7.265             | 6.803             | 6.829             |
| pH of CaCO3 saturation(60C)                     | Units        |      |          | 6.3               | 6.4               | 6.5               | 6.6               | 6.5               | 6.5               | 6.8               | 6.8               | 6.4               | 6.4               |
| Specific Conductance                            | ımho/cı      | m    |          | 2380              | 2250              | 1590              | 1490              | 1390              | 1420              | 992               | 930               | 2100              | 2090              |
| Metal                                           |              |      |          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Aluminum, Total, ICAP/MS                        | ug/l         | 1000 |          | ND                |
| Antimony, Total, ICAP/MS                        | ug/l         | 6    | p        | ND<br>1.1         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>5.7         | ND                | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          |
| Arsenic, Total, ICAP/MS Barium, Total, ICAP/MS  | ug/l<br>ug/l | 1000 | p        | 88                | ND<br>84          | 64                | 62                | 52                | ND<br>56          | 36                | 32                | 87                | ND<br>85          |
| Beryllium, Total, ICAP/MS                       | ug/l         | 4    | р        | ND                |
| Chromium, Total, ICAP/MS                        | ug/l         | 50   | р        | ND                |
| Hexavalent Chromium (Cr VI)                     | mg/l         |      | Ė        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Cadmium, Total, ICAP/MS                         | ug/l         | 5    | p        | ND                |
| Copper, Total, ICAP/MS                          | ug/l         | 1000 | s        | ND                |
| Lead, Total, ICAP/MS                            | ug/l         | 15   |          | ND                |
| Nickel, Total, ICAP/MS                          | ug/l         | 100  | -        | 7.2               | ND                | 7.2               | ND                |
| Selenium, Total, ICAP/MS                        | ug/l         | 50   | р        | ND<br>ND          | ND                | ND                | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND                | ND<br>ND          | ND                |
| Silver, Total, ICAP/MS Thallium, Total, ICAP/MS | ug/l<br>ug/l | 100  | s<br>p   | ND<br>ND          |
| Zinc, Total, ICAP/MS                            | ug/l         | 5000 | _        | ND<br>ND          | ND                | ND                | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | 5.6               | ND<br>ND          | ND<br>ND          |
| Volatile Organic Compounds                      | ug/1         | 5500 | 3        | 140               | 140               | 140               | 110               | 110               | 110               | 140               | 5.0               | 110               | 110               |
| Trichloroethylene (TCE)                         | ug/l         | 5    | р        | ND                |
| Tetrachloroethylene (PCE)                       | ug/l         | 5    | p        | ND                |
| 1,1-Dichloroethylene                            | ug/l         | 6    | p        | ND                |
| cis-1,2-Dichloroethylene                        | ug/l         | 6    | р        | ND                |
| Carbon Tetrachloride                            | ug/l         | 0.5  | p        | ND                |
| 1,1-Dichloroethane                              | ug/l         | 100  | -        | ND                |
| 1,2-Dichloroethane                              | ug/l         | 0.5  | p        | ND                |
| Fluorotrichloromethane-Freon11                  | ug/l         | 150  | p        | ND<br>ND          |
| Isopropylbenzene<br>n-Propylbenzene             | ug/l<br>ug/l |      |          | ND<br>ND          |
| Dichlorodifluoromethane                         | ug/l         |      |          | ND<br>ND          |
| Benzene                                         | ug/l         | 1    | р        | ND<br>ND          | ND                |
| Toluene                                         | ug/l         | 1750 | -        | ND                |
| m,p-Xylenes                                     | ug/l         | 150  |          | ND                |
| Ethyl benzene                                   | ug/l         | 700  | -        | ND                |
| MTBE                                            | ug/L         | 13   | -        | ND                |
| Perchlorate                                     | ug/l         | 6    | p        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                 | _            |      | _        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 9 of 15

| Water Quality Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |               |                  |             | 1 age > |         |         |         |         |         |         |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|---------------|------------------|-------------|---------|---------|---------|---------|---------|---------|---------|-------------------|
| General Miseral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nality Constituents     |               |               | Long<br>Beach #3 |             |         |         |         |         |         |         |         | Long<br>Beach #3  |
| General Miseral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nits                    | 12            | 3             | Zone 1           |             |         |         |         |         |         |         |         | Zone 5<br>9/15/04 |
| Total Dissolved Solid (TDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |               | <u> </u>      | 3/12/04          | 9/13/04     | 3/12/04 | 9/13/04 | 3/12/04 | 9/13/04 | 3/12/04 | 9/13/04 | 3/12/04 | 9/13/04           |
| Section   Calon Sam   may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1 100         | 00            | s 450            | 470         | 240     | 250     | 250     | 270     | 1380    | 1480    | 1820    | 1830              |
| Saion Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( /                     | _             |               |                  |             |         |         |         |         |         |         |         | 26.5              |
| Ton Ton Lic AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | $\overline{}$ | $\top$        |                  | <del></del> |         |         |         |         |         |         |         | 28.8              |
| Manganese, Total, ICAPMS   ugl   50 s   15   16   11   11   16   17   220   259   359   359   Tathshipy   NTU   5 s   0.7   3   0.45   0.3   1   0.7   0.25   0.85   1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                       | _             | .3            | _                |             |         |         |         |         |         |         |         | 0.23              |
| Turbidary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | _             | _             |                  |             | 11      |         |         | 17      |         | 250     | 350     | 360               |
| Barcon   B |                         | _             | 5             | s 0.7            | 3           | 0.45    | 0.3     | 1       | 0.7     | 0.25    | 0.85    | 1.1     | 1.2               |
| Bearbonnean as   ICOS_aclositated   mgr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/l                    | 1             | 1             | 369              | 348         | 135     | 129     | 164     | 161     | 134     | 130     | 135     | 127               |
| Calcium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l                    | 1             | $\neg$        | 0.43             | 0.37        | 0.13    | 0.13    | 0.13    | 0.14    | 0.11    | 0.11    | 0.11    | 0.12              |
| Carbonate as CO3, Calcalated   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | as HCO3,calculated mg/l | 1             | Т             | 448              | 421         | 163     | 156     | 198     | 195     | 163     | 158     | 164     | 155               |
| Hardness (Total, a. CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al, ICAP mg/l           | 1             |               | 12               | 11          | 17      | 17      | 23      | 23      | 220     | 240     | 300     | 310               |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO3, Calculated mg/l    | 1             |               | 5.81             | 8.65        | 3.35    | 3.21    | 4.07    | 3.18    | 0.841   | 0.816   | 0.847   | 0.8               |
| Flaceride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otal, as CaCO3) mg/l    | 1             |               | 44.8             | 41.9        | 54.8    | 54.8    | 74.7    | 73.9    | 784     | 850     | 1050    | 1070              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/l                    | 1 250         | 50            | s 16             | 17          | 18      | 40      | 34      | 39      | 600     | 820     | 850     | 880               |
| Langelier Index - 25 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/l                    | 1 2           | 2             | p 0.49           | 0.53        |         | 0.37    | 0.3     | 0.31    | 0.18    | 0.16    | 0.17    | 0.15              |
| Magnesium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               | 4             |                  |             |         |         |         |         |         |         |         | 0.01              |
| Mercury   ugfl   2   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | _             | $\perp$       |                  | <del></del> |         |         |         |         |         |         |         | 1.1               |
| Nitrite   Nitrogen   Ny   C   mg/l   10   p   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | _             | $\perp$       |                  |             |         |         |         |         |         |         |         | 73                |
| Nutrie, Nirrogen by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | _             | -             |                  |             |         |         |         |         |         |         |         | ND                |
| Potestism, Total, ICAP   mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | _             | _             |                  | -           |         |         |         |         |         |         |         | ND                |
| Sediman   Total (ICAP   mgrl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •                     | _             | 1             |                  | +           |         |         |         |         |         |         |         | ND                |
| Sufface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                       | _             | +             |                  | +           |         |         |         |         |         |         |         | 9.8               |
| Surfacantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | $\overline{}$ | 50            |                  | +           |         |         |         |         |         |         |         | 110               |
| Total Organic Carbon   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                       | _             | _             |                  | 1           |         |         |         |         |         |         |         | 69<br>ND          |
| Total Carbon   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | $\overline{}$ | _             | _                | +           |         |         |         |         |         |         |         | ND                |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | _             | 0             |                  |             |         |         |         |         |         |         |         | ND<br>0.63        |
| Ceneral Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               | +             |                  |             |         |         |         |         |         |         |         | 3.9               |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 1             | +             | 4.49             | 2.00        | 1.03    | 0.967   | 1.23    | 1.33    | 4.1     | 3.76    | 4.13    | 3.9               |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | T 15          | 5             | s 70             | 70          | 15      | 15      | 20      | 25      | 3       | ND      | 3       | ND                |
| Odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | _             | -             |                  |             |         |         |         |         |         |         |         | 7.9               |
| PH of CaCO3 saturation(025C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | _             | 3             |                  | <del></del> |         |         |         |         |         |         |         | 2                 |
| PH of CaCO3 saturation(60C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | _             |               |                  |             |         |         |         |         |         |         |         | 6.763             |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ` '                     |               | $\top$        |                  |             |         |         |         |         |         |         |         | 6.3               |
| Aluminum, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ` '                     | cm            | $\neg$        | _                | +           |         |         |         |         | 2130    | 2220    |         | 2730              |
| Antimony, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               | 寸             |                  |             |         |         |         |         |         |         |         |                   |
| Arsenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cotal, ICAP/MS ug/l     | 1 100         | 00            | p ND             | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND                |
| Barium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otal, ICAP/MS ug/l      | 1 6           | 6             | p ND             | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND                |
| Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al, ICAP/MS ug/l        | 1 50          | 0             | p ND             | ND          | ND      | ND      | ND      | ND      | 1       | ND      | ND      | ND                |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l, ICAP/MS ug/l         | 1 100         | 00            | p 8.3            | 9.1         | 13      | 13      | 12      | 12      | 76      | 88      | 140     | 150               |
| Hexavalent Chromium (Cr VI)   mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otal, ICAP/MS ug/l      | 1 4           | 4             | p ND             | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND                |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total, ICAP/MS ug/l     | 1 50          | 0             | p ND             | ND          | 2.3     | 1.2     | 2.9     | ND      | 2.5     | ND      | 2.3     | ND                |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium (Cr VI) mg/l   | 1             |               |                  |             |         |         |         |         |         |         |         |                   |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | $\overline{}$ | _             |                  |             |         |         |         |         |         |         |         | ND                |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               | _             | _                |             |         |         |         |         |         |         |         | ND                |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | _             | _             |                  |             |         |         |         |         |         |         |         | ND                |
| Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                       |               | -             |                  | +           |         |         |         |         |         |         |         | 9.9               |
| Thallium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                       | $\overline{}$ | _             |                  | +           |         |         |         |         |         |         |         | ND                |
| Zinc, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - C                     | _             | _             | _                |             |         |         |         |         |         |         |         | ND                |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | $\overline{}$ | _             |                  |             |         |         |         |         |         |         |         | ND                |
| Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 1 500         | 00            | s ND             | ND          | ND      | ND      | ND      | ND      | 23      | ND      | ND      | ND                |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1 .           | +             | a ND             | NID         | NID     | NID     | NID     | NID     | NID     | NID     | NID     | NID               |
| 1,1-Dichloroethylene         ug/l         6         p         ND         ND <td></td> <td><math>\overline{}</math></td> <td>-</td> <td>`</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | $\overline{}$ | -             | `                | +           |         |         |         |         |         |         |         | ND                |
| cis-1,2-Dichloroethylene         ug/l         6         p         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | -             | _             |                  | +           |         |         |         |         |         |         |         | ND<br>ND          |
| Carbon Tetrachloride         ug/l         0.5         p         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               | _             |                  |             |         |         |         |         |         |         |         | ND<br>ND          |
| 1,1-Dichloroethane         ug/l         100         p         ND         ND <td>· ·</td> <td></td> <td>_</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND<br/>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·                     |               | _             |                  | +           |         |         |         |         |         |         |         | ND<br>ND          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | _             | _             |                  |             |         |         |         |         |         |         |         | ND<br>ND          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               | _             |                  | +           |         |         |         |         |         |         |         | ND<br>ND          |
| Isopropylbenzene   ug/l   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | $\overline{}$ | _             |                  | +           |         |         |         |         |         |         |         | ND                |
| n-Propylbenzene         ug/l         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | +             |                  | +           |         |         |         |         |         |         |         | ND                |
| Dichlorodifluoromethane ug/l ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               | +             |                  | +           |         |         |         |         |         |         |         | ND                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | $\overline{}$ | +             |                  | +           |         |         |         |         |         |         |         | ND<br>ND          |
| ווא ד נוא ד נוא ד נוא ד נוא ד עוד דישון                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/l                    | _             | 1             | _                | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND                |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | $\overline{}$ | $\overline{}$ |                  | +           |         |         |         |         |         |         |         | ND                |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | $\overline{}$ | _             |                  |             |         |         |         |         |         |         |         | ND                |
| Ethyl benzene ug/l 700 p ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               | _             |                  | +           |         |         |         |         |         |         |         | ND                |
| MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | _             | _             |                  |             |         |         |         |         |         |         |         | ND                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               | -             |                  | 1           |         |         |         |         |         |         |         |                   |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 10 of 15

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                       |                                         | Long                                                          | Long                                       | Long                                                        | Long                                         | Long                                            | Long                                     | Long                                     | Long                                     | Long                                     | Long                                     | Long                                     | Long                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Water Quality Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                       | MCL Type                                | Beach #8                                                      | Beach #8                                   | Beach #8                                                    | Beach #8                                     | Beach #8                                        | Long<br>Beach #8                         | Beach #8                                 | Long<br>Beach #8                         | Long<br>Beach #8                         | Beach #8                                 | Beach #8                                 | Long<br>Beach #8                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                        | MCL                                                                                                   | CL                                      | Zone 1                                                        | Zone 1                                     | Zone 2                                                      | Zone 2                                       | Zone 3                                          | Zone 3                                   | Zone 4                                   | Zone 4                                   | Zone 5                                   | Zone 5                                   | Zone 6                                   | Zone 6                                   |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ď.                                                           | Σ                                                                                                     | X                                       | 5/20/04                                                       | 9/29/04                                    | 5/20/04                                                     | 9/29/04                                      | 5/20/04                                         | 9/30/04                                  | 5/20/04                                  | 9/30/04                                  | 5/20/04                                  | 9/30/04                                  | 5/20/04                                  | 9/30/04                                  |
| General Mineral Total Dissolved Solid (TDS)                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                         | 1000                                                                                                  | S                                       | 700                                                           | 690                                        | 650                                                         | 640                                          | 910                                             | 900                                      | 1380                                     | 1380                                     | 1040                                     | 1030                                     | 1010                                     | 1000                                     |
| Cation Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                             | meq/l                                                        | 1000                                                                                                  | 3                                       | 11                                                            | 11                                         | 10.8                                                        | 10.3                                         | 15                                              | 15.4                                     | 23.8                                     | 24.4                                     | 17.8                                     | 18                                       | 16.4                                     | 16.5                                     |
| Anion Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                              | meq/l                                                        |                                                                                                       |                                         | 10.5                                                          | 10.8                                       | 9.73                                                        | 9.96                                         | 13.7                                            | 14.3                                     | 25.4                                     | 24.3                                     | 17.7                                     | 18.2                                     | 16                                       | 15.6                                     |
| Iron, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/l                                                         | 0.3                                                                                                   | s                                       | 0.21                                                          | 0.2                                        | 0.2                                                         | 0.18                                         | 0.21                                            | 0.21                                     | 0.15                                     | 0.18                                     | 0.14                                     | 0.17                                     | 0.25                                     | 0.29                                     |
| Manganese, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/l                                                         | 50                                                                                                    | s                                       | 15                                                            | 18                                         | 21                                                          | 25                                           | 38                                              | 47                                       | 45                                       | 54                                       | 58                                       | 76                                       | 255                                      | 250                                      |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NTU                                                          | 5                                                                                                     | s                                       | 1.9                                                           | 2.2                                        | 4.1                                                         | 2.9                                          | 2.3                                             | 2.8                                      | 1.7                                      | 4.6                                      | 1.1                                      | 5.1                                      | 0.75                                     | 0.85                                     |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                         |                                                                                                       |                                         | 492                                                           | 507<br>1.3                                 | 435                                                         | 449                                          | 565                                             | 594<br>1.3                               | 366                                      | 380                                      | 277                                      | 288                                      | 188<br>0.2                               | 196                                      |
| Boron Bicarbonate as HCO3,calculated                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l<br>mg/l                                                 |                                                                                                       |                                         | 1.2<br>596                                                    | 616                                        | 0.8<br>527                                                  | 0.8<br>547                                   | 1.3<br>685                                      | 722                                      | 1.1<br>445                               | 1.1<br>462                               | 0.6<br>337                               | 0.61<br>351                              | 229                                      | 0.23                                     |
| Calcium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l                                                         |                                                                                                       |                                         | 6.3                                                           | 6.4                                        | 8.5                                                         | 8.1                                          | 9.9                                             | 10                                       | 48                                       | 50                                       | 57                                       | 59                                       | 99                                       | 100                                      |
| Carbonate as CO3, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/l                                                         |                                                                                                       |                                         | 12.2                                                          | 7.99                                       | 8.6                                                         | 1.42                                         | 11.2                                            | 7.44                                     | 4.58                                     | 3                                        | 2.76                                     | 0.908                                    | 1.87                                     | 0.778                                    |
| Hardness (Total, as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                         |                                                                                                       |                                         | 23.1                                                          | 23.8                                       | 33.2                                                        | 31.3                                         | 44.1                                            | 44.3                                     | 260                                      | 269                                      | 249                                      | 254                                      | 375                                      | 381                                      |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                         | 250                                                                                                   | s                                       | 22                                                            | 21                                         | 35                                                          | 33                                           | 85                                              | 85                                       | 640                                      | 590                                      | 430                                      | 440                                      | 420                                      | 400                                      |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                         | 2                                                                                                     | p                                       | 0.82                                                          | 0.83                                       | 0.85                                                        | 0.85                                         | 0.6                                             | 0.61                                     | 0.23                                     | 0.22                                     | 0.19                                     | 0.18                                     | 0.58                                     | 0.58                                     |
| Hydroxide as OH, Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                         |                                                                                                       |                                         | 0.05                                                          | 0.03                                       | 0.04                                                        | -0.09                                        | 0.04                                            | 0.03                                     | 0.03                                     | 0.02                                     | 0.02                                     | 0.007                                    | 0.02                                     | 0.009                                    |
| Langelier Index - 25 degree<br>Magnesium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                  | None<br>mg/l                                                 |                                                                                                       |                                         | 1.8                                                           | 1.9                                        | 2.9                                                         | 2.7                                          | 4.7                                             | 4.7                                      | 34                                       | 35                                       | 26                                       | 26                                       | 31                                       | 32                                       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l                                                         | 2                                                                                                     | р                                       | ND                                                            | ND                                         | ND                                                          | ND                                           | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       |
| Nitrate-N by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                         | 10                                                                                                    | p                                       | ND                                                            | ND                                         | ND                                                          | ND                                           | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       |
| Nitrite, Nitrogen by IC                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/l                                                         | 1                                                                                                     | p                                       | ND                                                            | ND                                         | ND                                                          | ND                                           | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       |
| Potassium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/l                                                         |                                                                                                       |                                         | 2.3                                                           | 2.8                                        | 4.1                                                         | 4.4                                          | 7.4                                             | 7.7                                      | 12                                       | 12                                       | 9.4                                      | 9.9                                      | 6.4                                      | 6.5                                      |
| Sodium, Total, ICAP                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l                                                         |                                                                                                       |                                         | 240                                                           | 240                                        | 230                                                         | 220                                          | 310                                             | 330                                      | 420                                      | 430                                      | 290                                      | 290                                      | 200                                      | 200                                      |
| Sulfate<br>Surfactants                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/l                                                         | 250<br>0.5                                                                                            | S                                       | ND<br>ND                                                      | ND<br>ND                                   | ND<br>ND                                                    | ND<br>ND                                     | ND<br>ND                                        | ND<br>ND                                 | ND<br>ND                                 | ND<br>0.067                              | ND<br>0.064                              | ND<br>ND                                 | 16<br>ND                                 | 17<br>ND                                 |
| Total Nitrate, Nitrite-N, CALC                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l<br>mg/l                                                 | 10                                                                                                    | s<br>p                                  | ND                                                            | ND                                         | ND                                                          | ND                                           | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND<br>ND                                 | ND<br>ND                                 | ND                                       |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l                                                         | 10                                                                                                    | Р                                       | 31.7                                                          | 15.4                                       | 28.7                                                        | 19.1                                         | 34.8                                            | 26.8                                     | 9                                        | 18.4                                     | 9                                        | 8.2                                      | 1.5                                      | 1.2                                      |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l                                                         |                                                                                                       |                                         | 3.77                                                          | 6.17                                       | 4.2                                                         | 27.5                                         | 5.45                                            | 9.11                                     | 5.62                                     | 9.24                                     | 5.35                                     | 17.6                                     | 3.64                                     | 9.54                                     |
| General Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                       |                                         |                                                               |                                            |                                                             |                                              |                                                 |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Apparent Color                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACU                                                          | 15                                                                                                    | s                                       | 350                                                           | 600                                        | 350                                                         | 400                                          | 350                                             | 600                                      | 70                                       | 70                                       | 60                                       | 50                                       | 3                                        | 5                                        |
| Lab pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                        | _                                                                                                     |                                         | 8.5                                                           | 8.3                                        | 8.4                                                         | 7.6                                          | 8.4                                             | 8.2                                      | 8.2                                      | 8                                        | 8.1                                      | 7.6                                      | 8.1                                      | 7.7                                      |
| Odor<br>pH of CaCO3 saturation(25C)                                                                                                                                                                                                                                                                                                                                                                                                                                    | TON<br>Units                                                 | 3                                                                                                     | S                                       | 7.87                                                          | <b>40</b><br>7.849                         | 7.794                                                       | 17<br>7.799                                  | 17<br>7.614                                     | <b>3</b> 7.586                           | 7.115                                    | 7.081                                    | 7.161                                    | 17<br>7.129                              | 7.09                                     | 7.067                                    |
| pH of CaCO3 saturation(23C)                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                        |                                                                                                       |                                         | 7.4                                                           | 7.649                                      | 7.794                                                       | 7.799                                        | 7.014                                           | 7.380                                    | 6.7                                      | 6.6                                      | 6.7                                      | 6.7                                      | 6.6                                      | 6.6                                      |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mho/cr                                                       | n                                                                                                     |                                         | 1040                                                          | 1040                                       | 969                                                         | 964                                          | 1400                                            | 1390                                     | 2510                                     | 2490                                     | 1880                                     | 1880                                     | 1720                                     | 1730                                     |
| Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                       |                                         |                                                               |                                            |                                                             |                                              |                                                 |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Aluminum, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                                         | 1000                                                                                                  | p                                       | 51                                                            | ND                                         | 120                                                         | 67                                           | 42                                              | ND                                       |
| Antimony, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                                         | 6                                                                                                     | p                                       | ND                                                            | ND                                         | ND                                                          | ND                                           | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       |
| Arsenic, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l                                                         | 50                                                                                                    | p                                       | 1.7<br>7.9                                                    | 2                                          | 1.4                                                         | ND<br>8.0                                    | 1.4                                             | 2.6                                      | ND<br>22                                 | ND<br>20                                 | ND                                       | ND<br>20                                 | ND<br>83                                 | ND<br>84                                 |
| Barium, Total, ICAP/MS Beryllium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/l<br>ug/l                                                 | 1000                                                                                                  | p<br>p                                  | ND                                                            | 8.9<br>ND                                  | 9.3<br>ND                                                   | 8.9<br>ND                                    | 13<br>ND                                        | 15<br>ND                                 | ND                                       | 29<br>ND                                 | 15<br>ND                                 | 20<br>ND                                 | ND                                       | 84<br>ND                                 |
| Chromium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                                         | 50                                                                                                    | р                                       | 1.3                                                           | ND                                         | 1.5                                                         | ND                                           | 1.6                                             | ND                                       | ND                                       | 5.5                                      | ND                                       | ND                                       | ND                                       | ND                                       |
| Hexavalent Chromium (Cr VI)                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                         |                                                                                                       | r                                       | ND                                                            | 0.1                                        | ND                                                          | 0.1                                          | ND                                              |                                          |                                          |                                          |                                          |                                          |                                          |                                          |
| Cadmium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l                                                         | -                                                                                                     | -                                       | 3.755                                                         |                                            |                                                             |                                              | ND                                              | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       | ND                                       |
| Copper, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 5                                                                                                     | p                                       | ND                                                            | ND                                         | ND                                                          | ND                                           | ND<br>ND                                        | ND<br>ND                                 | ND<br>ND                                 | ND<br>ND                                 | ND<br>ND                                 | ND<br>ND                                 | ND<br>ND                                 | ND<br>ND                                 |
| Lead, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/l                                                         | 1000                                                                                                  | p<br>s                                  | 14                                                            | 7.9                                        | 16                                                          | ND<br>11                                     | ND<br>3.1                                       | ND<br>ND                                 |
| Nickel, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/l                                                         | 1000<br>15                                                                                            | S                                       | 14<br>1.5                                                     | 7.9<br>ND                                  | 16<br>1.2                                                   | ND<br>11<br>ND                               | ND<br>3.1<br>ND                                 | ND<br>ND<br>ND                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/l<br>ug/l                                                 | 1000<br>15<br>100                                                                                     | s<br>p                                  | 14<br>1.5<br>ND                                               | 7.9<br>ND<br>ND                            | 16<br>1.2<br>ND                                             | ND<br>11<br>ND<br>ND                         | ND<br>3.1<br>ND<br>ND                           | ND<br>ND<br>ND                           | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     |
| Selenium, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l<br>ug/l<br>ug/l                                         | 1000<br>15<br>100<br>50                                                                               | s<br>p<br>p                             | 14<br>1.5<br>ND<br>ND                                         | 7.9<br>ND<br>ND<br>ND                      | 16<br>1.2<br>ND<br>ND                                       | ND<br>11<br>ND<br>ND<br>ND                   | ND 3.1 ND ND ND                                 | ND<br>ND<br>ND<br>ND                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/l<br>ug/l                                                 | 1000<br>15<br>100                                                                                     | s<br>p                                  | 14<br>1.5<br>ND                                               | 7.9<br>ND<br>ND                            | 16<br>1.2<br>ND                                             | ND<br>11<br>ND<br>ND                         | ND<br>3.1<br>ND<br>ND                           | ND<br>ND<br>ND                           | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND                     |
| Selenium, Total, ICAP/MS<br>Silver, Total, ICAP/MS                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/l<br>ug/l<br>ug/l<br>ug/l                                 | 1000<br>15<br>100<br>50<br>100                                                                        | s p p s p                               | 14<br>1.5<br>ND<br>ND<br>ND                                   | 7.9<br>ND<br>ND<br>ND                      | 16<br>1.2<br>ND<br>ND<br>ND                                 | ND 11 ND ND ND ND ND                         | ND 3.1 ND ND ND ND ND                           | ND ND ND ND ND ND ND ND                  | ND ND ND ND ND ND ND ND                  | ND ND ND ND ND ND ND                     | ND ND ND ND ND ND ND ND                  | ND ND ND ND ND ND ND                     | ND ND ND ND ND ND ND                     | ND ND ND ND ND ND ND                     |
| Selenium, Total, ICAP/MS<br>Silver, Total, ICAP/MS<br>Thallium, Total, ICAP/MS<br>Zinc, Total, ICAP/MS<br>Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                   | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l                         | 1000<br>15<br>100<br>50<br>100<br>2                                                                   | p<br>p<br>s                             | 14<br>1.5<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>8.8          | 7.9<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND    | 16<br>1.2<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND               | ND 11 ND       | ND 3.1 ND ND ND ND ND ND 6.6                    | ND      | ND ND ND ND ND ND ND ND ND               | ND         | ND ND ND ND ND ND ND ND S S S S S S S S  | ND         | ND ND ND ND ND ND ND ND ND               | ND            |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                       | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000                                                           | p p s p s                               | 14<br>1.5<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND           | 7.9 ND | 16 1.2 ND                     | ND 11 ND    | ND 3.1 ND   | ND   | ND   | ND   | ND N | ND N | ND   | ND   |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                             | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5                                                      | p p s p s                               | 14 1.5 ND                 | 7.9 ND    | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene                                                                                                                                                                                                                                                   | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6                                            | p p s p p s                             | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene                                                                                                                                                                                                                          | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6                                       | p p s p p s p p p s                     | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene                                                                                                                                                                                                                                                   | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6                                            | p p s p p s p p p p p                   | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride                                                                                                                                                                                                     | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5                                | p p s p p s p p p s                     | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane                                                                                                                                                                                  | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>5<br>6<br>6<br>0.5<br>100                         | p p s p p s p p p p p p p p p p p       | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND 3.1 ND   | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Trichloroethylene (CDE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene                                                                                                    | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>6<br>6<br>0.5<br>100<br>0.5                       | p p s p p s p p p p p p p p p p p p     | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene                                                                                                   | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>6<br>6<br>0.5<br>100<br>0.5                       | p p s p p s p p p p p p p p p p p p     | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane                                                        | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>50000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150          | p p s p s p p p p p p p p p p p p       | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene                   | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>50000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150          | p p s p s p p p p p p p p p p p p p p p | 14 1.5 ND ND ND ND 8.8 ND | 7.9 ND | 16 1.2 ND ND ND ND 8 ND | ND II ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene           | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150<br>150<br>1750 | p p s p s p p p p p p p p p p p p p p p | 14 1.5 ND ND ND ND 8.8 ND | 7.9 ND | 16 1.2 ND               | ND 11 ND | ND                                              | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene                                          | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>50000<br>5<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150          | p p s p s p p p p p p p p p p p p p p p | 14 1.5 ND ND ND ND 8.8 ND | 7.9 ND | 16 1.2 ND               | ND II ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |
| Selenium, Total, ICAP/MS Silver, Total, ICAP/MS Thallium, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Volatile Organic Compounds Trichloroethylene (TCE) Tetrachloroethylene (PCE) 1,1-Dichloroethylene cis-1,2-Dichloroethylene Carbon Tetrachloride 1,1-Dichloroethane 1,2-Dichloroethane Fluorotrichloromethane-Freon11 Isopropylbenzene n-Propylbenzene Dichlorodifluoromethane Benzene Toluene m,p-Xylenes | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l                      | 1000<br>15<br>100<br>50<br>100<br>2<br>5000<br>5<br>6<br>6<br>0.5<br>100<br>0.5<br>150<br>1750        | p p s p s p p p p p p p p p p p p p p p | 14 1.5 ND                 | 7.9 ND | 16 1.2 ND               | ND II ND | ND   3.1   ND   ND   ND   ND   ND   ND   ND   N | ND N | ND N | ND N | ND N | ND N | ND N | ND N |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 11 of 15

|                                                      |              |          |          |                  | 1 agc            | 11 01 15         |                  |                  |                  |                  |                  |
|------------------------------------------------------|--------------|----------|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                      |              |          |          |                  |                  |                  |                  |                  |                  |                  |                  |
| W-t O                                                |              |          | ype      | PM-3             |
| Water Quality Constituents                           | s            | د ا      | L T      | Madrid<br>Zone 1 | Madrid<br>Zone 1 | Madrid<br>Zone 2 | Madrid<br>Zone 2 | Madrid<br>Zone 3 | Madrid<br>Zone 3 | Madrid<br>Zone 4 | Madrid<br>Zone 4 |
|                                                      | Units        | MCL      | MCL Type | 4/6/04           | 9/21/04          | 4/6/04           | 9/21/04          | 4/6/04           | 9/21/04          | 4/6/04           | 9/21/04          |
| General Mineral                                      | _            | <u> </u> | _        | ., ., .          | 2722701          | ., ., .          | 77_277           |                  | ,,_,,            |                  | ,,_,,,           |
| Total Dissolved Solid (TDS)                          | mg/l         | 1000     | s        | 400              | 390              | 280              | 280              | 750              | 800              | 930              | 980              |
| Cation Sum                                           | meq/l        |          |          | 7.01             | 6.89             | 4.92             | 5.15             | 10.8             | 11.3             | 14.2             | 14.8             |
| Anion Sum                                            | meq/l        | _        |          | 6.92             | 6.61             | 4.83             | 4.8              | 11.3             | 10.8             | 14.6             | 14.7             |
| Iron, Total, ICAP                                    | mg/l         | 0.3      | s        | 0.12             | 0.063            | 0.14             | 0.13             | 0.11             | 0.11             | 0.43             | 0.46             |
| Manganese, Total, ICAP/MS                            | ug/l         | 50       | S        | 42               | 36               | 46               | 42               | 62               | 62               | 320              | 320              |
| Turbidity Alkalinity                                 | NTU<br>mg/l  | 3        | S        | 1.1<br>313       | 4.1<br>296       | 0.3              | 0.2<br>187       | 2.3<br>195       | 1.4              | 2.6              | 2.9<br>187       |
| Boron                                                | mg/l<br>mg/l |          |          | 0.37             | 0.38             | 0.099            | 0.12             | 0.1              | 0.13             | 0.28             | 0.34             |
| Bicarbonate as HCO3,calculated                       | mg/l         |          |          | 380              | 359              | 239              | 227              | 237              | 228              | 238              | 228              |
| Calcium, Total, ICAP                                 | mg/l         |          |          | 13               | 12               | 37               | 39               | 98               | 100              | 120              | 120              |
| Carbonate as CO3, Calculated                         | mg/l         |          |          | 4.93             | 5.86             | 2.46             | 1.86             | 1.22             | 1.18             | 1.55             | 0.743            |
| Hardness (Total, as CaCO3)                           | mg/l         |          |          | 72.8             | 68.3             | 138              | 143              | 360              | 369              | 440              | 448              |
| Chloride                                             | mg/l         | 250      | s        | 23               | 24               | 31               | 37               | 260              | 250              | 350              | 350              |
| Fluoride                                             | mg/l         | 2        | p        | 0.3              | 0.3              | 0.38             | 0.38             | 0.33             | 0.34             | 0.26             | 0.23             |
| Hydroxide as OH, Calculated                          | mg/l         |          |          | 0.03             | 0.04             | 0.03             | 0.02             | 0.01             | 0.01             | 0.02             | 0.009            |
| Langelier Index - 25 degree                          | None<br>mg/l |          |          | 0.55             | 0.59             | 0.7              | 0.6              | 0.82             | 0.81             | 34               | 0.69             |
| Magnesium, Total, ICAP<br>Mercury                    | mg/l         | 2        | n        | 9.8<br>ND        | 9.3<br>ND        | 11<br>ND         | 11<br>ND         | 28<br>ND         | 29<br>ND         | ND               | 36<br>ND         |
| Nitrate-N by IC                                      | ug/l<br>mg/l | 10       | p<br>p   | ND<br>ND         |
| Nitrite, Nitrogen by IC                              | mg/l         | 10       | p        | ND               |
| Potassium, Total, ICAP                               | mg/l         |          | r        | 13               | 12               | 3                | 3.2              | 5.2              | 5.5              | 6.8              | 7.3              |
| Sodium, Total, ICAP                                  | mg/l         |          |          | 120              | 120              | 48               | 51               | 80               | 87               | 120              | 130              |
| Sulfate                                              | mg/l         | 250      | s        | ND               | ND               | ND               | ND               | ND               | ND               | 39               | 53               |
| Surfactants                                          | mg/l         | 0.5      | s        | ND               |
| Total Nitrate, Nitrite-N, CALC                       | mg/l         | 10       | p        | ND               |
| Total Organic Carbon                                 | mg/l         |          |          | 3.1              | 2.9              | 0.6              | ND               | 0.7              | 0.7              | 0.9              | 0.9              |
| Carbon Dioxide                                       | mg/l         | -        |          | 3.81             | 2.86             | 3.02             | 3.61             | 5.97             | 5.74             | 4.76             | 9.1              |
| General Physical Apparent Color                      | ACU          | 15       | s        | 35               | 30               | 5                | 5                | 5                | 5                | 5                | 10               |
| Lab pH                                               | Units        | 13       | 3        | 8.3              | 8.4              | 8.2              | 8.1              | 7.9              | 7.9              | 8                | 7.7              |
| Odor                                                 | TON          | 3        | S        | 8                | 3                | 1                | 2                | 2                | 2                | 2                | 17               |
| pH of CaCO3 saturation(25C)                          | Units        |          | П        | 7.751            | 7.811            | 7.498            | 7.498            | 7.079            | 7.087            | 6.989            | 7.008            |
| pH of CaCO3 saturation(60C)                          | Units        |          |          | 7.3              | 7.4              | 7.1              | 7.1              | 6.6              | 6.6              | 6.5              | 6.6              |
| Specific Conductance                                 | ımho/cı      | m        |          | 659              | 629              | 471              | 466              | 1160             | 1160             | 1460             | 1490             |
| Metal                                                |              |          |          |                  |                  |                  |                  |                  |                  |                  |                  |
| Aluminum, Total, ICAP/MS                             | ug/l         | 1000     | p        | ND               |
| Antimony, Total, ICAP/MS                             | ug/l         | 6        | p        | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>ND         | ND<br>2.9        | ND<br>3.2        | ND 7.5           | ND<br>4.3        |
| Arsenic, Total, ICAP/MS Barium, Total, ICAP/MS       | ug/l<br>ug/l | 1000     | p<br>p   | 25               | 25               | 20               | 20               | 69               | 69               | 83               | 84               |
| Beryllium, Total, ICAP/MS                            | ug/l         | 4        | р        | ND               |
| Chromium, Total, ICAP/MS                             | ug/l         | 50       | р        | ND               |
| Hexavalent Chromium (Cr VI)                          | mg/l         |          | ŕ        |                  |                  |                  |                  |                  |                  |                  |                  |
| Cadmium, Total, ICAP/MS                              | ug/l         | 5        | р        | ND               |
| Copper, Total, ICAP/MS                               | ug/l         | 1000     | s        | ND               |
| Lead, Total, ICAP/MS                                 | ug/l         | 15       |          | ND               |
| Nickel, Total, ICAP/MS                               | ug/l         | 100      | p        | ND               |
| Selenium, Total, ICAP/MS                             | ug/l         | 50       | р        | ND               | ND<br>ND         | ND               | ND<br>ND         | ND<br>ND         | ND               | ND               | ND               |
| Silver, Total, ICAP/MS Thallium, Total, ICAP/MS      | ug/l<br>ug/l | 100      | s<br>p   | ND<br>ND         |
| Zinc, Total, ICAP/MS                                 | ug/l         | 5000     |          | ND               | ND               | ND               | ND<br>ND         | ND<br>ND         | ND               | ND               | ND               |
| Volatile Organic Compounds                           | ug/1         | 3000     | 3        | ND               | ND               | ND               | NB               | NB               | TVD              | ND               | ND               |
| Trichloroethylene (TCE)                              | ug/l         | 5        | р        | ND               | ND               | ND               | ND               | ND               | ND               | 1.3              | 1.2              |
| Tetrachloroethylene (PCE)                            | ug/l         | 5        | p        | ND               |
| 1,1-Dichloroethylene                                 | ug/l         | 6        | p        | ND               | ND               | ND               | ND               | 13               | 11               | 4.5              | 2.3              |
| cis-1,2-Dichloroethylene                             | ug/l         | 6        | р        | ND               | ND               | ND               | ND               | 1.4              | 1.5              | 1.3              | 2                |
| Carbon Tetrachloride                                 | ug/l         | 0.5      | p        | ND               |
| 1,1-Dichloroethane                                   | ug/l         | 100      | p        | ND               | ND               | ND               | ND               | 1.6              | 1.3              | ND               | ND               |
| 1,2-Dichloroethane                                   | ug/l         | 0.5      | p        | ND               |
| Fluorotrichloromethane-Freon 1 l<br>Isopropylbenzene | ug/l         | 150      | p        | ND<br>ND         |
| n-Propylbenzene                                      | ug/l<br>ug/l |          |          | ND<br>ND         |
| Dichlorodifluoromethane                              | ug/l         |          |          | ND<br>ND         |
| Benzene                                              | ug/l         | 1        | р        | ND               |
| Toluene                                              | ug/l         | 1750     | _        | ND               |
| m,p-Xylenes                                          | ug/l         | 150      | p        | ND               |
| Ethyl benzene                                        | ug/l         | 700      | p        | ND               |
| MTBE                                                 | ug/L         | 13       | p        | ND               |
| Perchlorate                                          | ug/l         | 6        | р        |                  |                  |                  |                  |                  |                  |                  |                  |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 12 of 15

|                                                      |              |           |        |                 |                 | 12 01 13        |                 |                 |                 |                   |                   |
|------------------------------------------------------|--------------|-----------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-------------------|
| Water Quality Constituents                           |              |           | Type   | PM-4<br>Mariner   | PM-4<br>Mariner   |
|                                                      | Units        | 占         | MCL 1  | Zone 1          | Zone 1          | Zone 2          | Zone 2          | Zone 3          | Zone 3          | Zone 4            | Zone 4            |
|                                                      | Un           | MCL       | M      | 4/18/04         | 9/26/04         | 4/18/04         | 9/26/04         | 4/18/04         | 9/26/04         | 4/18/04           | 9/26/04           |
| General Mineral                                      |              |           |        |                 |                 |                 |                 |                 |                 |                   |                   |
| Total Dissolved Solid (TDS)                          | mg/l         | 1000      | S      | 340             | 340             | 12000           | 11500           | 730             | 720             | 690               | 680               |
| Cation Sum                                           | meq/l        |           |        | 6.05            | 5.91            | 187             | 170             | 11.9            | 11.1            | 11.2              | 11                |
| Anion Sum                                            | meq/l        | 0.2       | _      | 5.84<br>0.079   | 5.62<br>0.077   | 179<br>0.21     | 195             | 11.5<br>0.038   | 10.8<br>0.039   | 10.9              | 10.6              |
| Iron, Total, ICAP Manganese, Total, ICAP/MS          | mg/l<br>ug/l | 50        | S      | 33              | 39              | 1100            | 0.2<br>1200     | 61              | 69              | 0.16<br><b>79</b> | 0.16<br><b>90</b> |
| Turbidity                                            | NTU          | 5         | s      | 0.1             | 0.1             | 1.3             | 0.9             | 1.2             | 1.6             | 0.85              | 0.45              |
| Alkalinity                                           | mg/l         |           | 3      | 253             | 242             | 152             | 149             | 162             | 160             | 190               | 182               |
| Boron                                                | mg/l         |           |        | 0.18            | 0.19            | 0.19            | 0.21            | 0.38            | 0.37            | 0.28              | 0.28              |
| Bicarbonate as HCO3,calculated                       | mg/l         |           |        | 308             | 294             | 185             | 182             | 197             | 195             | 231               | 221               |
| Calcium, Total, ICAP                                 | mg/l         |           |        | 28              | 27              | 1500            | 1300            | 78              | 73              | 81                | 79                |
| Carbonate as CO3, Calculated                         | mg/l         |           |        | 2.52            | 3.81            | 0.302           | 0.471           | 1.61            | 1.6             | 1.5               | 1.81              |
| Hardness (Total, as CaCO3)                           | mg/l         |           |        | 119             | 113             | 5560            | 4730            | 281             | 265             | 293               | 280               |
| Chloride                                             | mg/l         | 250       | s      | 27              | 27              | 5700            | 6300            | 130             | 120             | 120               | 120               |
| Fluoride                                             | mg/l         | 2         | p      | 0.34            | 0.34            | 0.13            | 0.1             | 0.29            | 0.29            | 0.28              | 0.27              |
| Hydroxide as OH, Calculated                          | mg/l         |           |        | 0.02            | 0.03            | 0.004           | 0.007           | 0.02            | 0.02            | 0.02              | 0.02              |
| Langelier Index - 25 degree                          | None         |           |        | 0.59            | 0.76            | 1.4             | 1.5             | 0.84            | 0.81            | 0.83              | 0.9               |
| Magnesium, Total, ICAP                               | mg/l         |           |        | 12              | 11              | 440             | 360             | 21              | 20              | 22                | 20                |
| Mercury                                              | ug/l         | 2         | p      | ND                | ND                |
| Nitrate-N by IC                                      | mg/l         | 10        | p      | ND                | ND                |
| Nitrite, Nitrogen by IC                              | mg/l         | 1         | p      | ND                | ND                |
| Potassium, Total, ICAP                               | mg/l         |           |        | 7.3             | 6.9             | 54              | 52              | 7               | 6.4             | 6.6               | 6.6               |
| Sodium, Total, ICAP                                  | mg/l         | 250       |        | 80<br>ND        | 80<br>ND        | 1700            | 1700            | 140             | 130             | 120               | 120               |
| Sulfate                                              | mg/l         | 250       | S      | ND              | ND              | 710             | 700             | 220             | 200             | 180               | 170               |
| Surfactants                                          | mg/l         | 0.5       | S      | ND              | ND<br>ND        | 0.087           | ND              | ND              | ND              | ND                | ND                |
| Γotal Nitrate, Nitrite-N, CALC  Γotal Organic Carbon | mg/l<br>mg/l | 10        | p      | ND<br>1.6       | 1.6             | ND<br>1.2       | ND<br>1.1       | ND<br>1.5       | ND<br>1.5       | ND<br>1.1         | ND<br>1.1         |
| Carbon Dioxide                                       | mg/l         |           |        | 4.89            | 2.95            | 14.7            | 9.14            | 3.13            | 3.1             | 4.62              | 3.51              |
| General Physical                                     | mg/1         | _         |        | 4.07            | 2.73            | 17.7            | 7.14            | 3.13            | 3.1             | 4.02              | 3.31              |
| Apparent Color                                       | ACU          | 15        | s      | 15              | 10              | 5               | 5               | 10              | 5               | 5                 | 3                 |
| Lab pH                                               | Units        | 15        | 5      | 8.1             | 8.3             | 7.4             | 7.6             | 8.1             | 8.1             | 8                 | 8.1               |
| Odor                                                 | TON          | 3         | s      | 3               | 1               | 3               | 1               | 3               | 1               | 4                 | 1                 |
| pH of CaCO3 saturation(25C)                          | Units        |           |        | 7.509           | 7.545           | 6.002           | 6.071           | 7.258           | 7.292           | 7.173             | 7.203             |
| pH of CaCO3 saturation(60C)                          | Units        |           |        | 7.1             | 7.1             | 5.6             | 5.6             | 6.8             | 6.8             | 6.7               | 6.8               |
| Specific Conductance                                 | ımho/cı      | m         |        | 569             | 504             | 16310           | 15400           | 1140            | 1040            | 1090              | 976               |
| Metal                                                |              |           |        |                 |                 |                 |                 |                 |                 |                   |                   |
| Aluminum, Total, ICAP/MS                             | ug/l         | 1000      | p      | ND                | ND                |
| Antimony, Total, ICAP/MS                             | ug/l         | 6         | p      | ND                | ND                |
| Arsenic, Total, ICAP/MS                              | ug/l         | 50        | p      | ND              | ND              | 68              | ND              | ND              | ND              | ND                | ND                |
| Barium, Total, ICAP/MS                               | ug/l         | 1000      | p      | 22              | 22              | 250             | 240             | 100             | 100             | 50                | 54                |
| Beryllium, Total, ICAP/MS                            | ug/l         | 4         | p      | ND                | ND                |
| Chromium, Total, ICAP/MS                             | ug/l         | 50        | p      | 4.1             | 3               | 4.1             | 3.4             | 2.6             | 2               | 2.7               | 2.5               |
| Hexavalent Chromium (Cr VI)                          | mg/l         | <u> </u>  |        |                 |                 |                 |                 | 2.75            |                 |                   |                   |
| Cadmium, Total, ICAP/MS                              | ug/l         | 5         | p      | ND                | ND                |
| Copper, Total, ICAP/MS                               | ug/l         | 1000      | S      | ND              | ND              | 3               | 7.2             | ND              | ND              | ND                | ND                |
| Lead, Total, ICAP/MS                                 | ug/l         | 15<br>100 |        | ND<br>ND        | ND<br>ND        | ND<br>25        | ND<br>67        | ND<br>ND        | ND<br>ND        | ND<br>ND          | ND<br>ND          |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS   | ug/l         | 50        | p      | ND<br>ND        | ND<br>ND        | 42              | ND              | ND<br>ND        | ND<br>ND        | ND<br>ND          | ND<br>ND          |
| Silver, Total, ICAP/MS                               | ug/l<br>ug/l | 100       | p<br>s | ND<br>ND        | ND<br>ND        | ND              | 0.52            | ND<br>ND        | ND<br>ND        | ND<br>ND          | ND<br>ND          |
| Fhallium, Total, ICAP/MS                             | ug/l         | 2         | p      | ND              | ND<br>ND        | ND<br>ND        | 0.52<br>ND      | ND<br>ND        | ND<br>ND        | ND                | ND<br>ND          |
| Zinc, Total, ICAP/MS                                 | ug/l         | 5000      |        | ND<br>ND        | ND<br>ND        | 5.8             | ND<br>ND        | ND<br>ND        | ND<br>ND        | ND<br>ND          | ND                |
| Volatile Organic Compounds                           | ug/1         | 3000      | 3      | ND              | עאו             | 5.6             | IND             | IND             | ND              | ND                | ND                |
| Trichloroethylene (TCE)                              | ug/l         | 5         | р      | ND                | ND                |
| Tetrachloroethylene (PCE)                            | ug/l         | 5         | р      | ND                | ND                |
| ,1-Dichloroethylene                                  | ug/l         | 6         | p      | ND                | ND                |
| eis-1,2-Dichloroethylene                             | ug/l         | 6         | p      | ND                | ND                |
| Carbon Tetrachloride                                 | ug/l         | 0.5       | р      | ND                | ND                |
| ,1-Dichloroethane                                    | ug/l         | 100       | p      | ND                | ND                |
| ,2-Dichloroethane                                    | ug/l         | 0.5       | p      | ND                | ND                |
| Fluorotrichloromethane-Freon 11                      | ug/l         | 150       | p      | ND                | ND                |
| sopropylbenzene                                      | ug/l         |           | Ĺ      | ND                | ND                |
| n-Propylbenzene                                      | ug/l         |           |        | ND                | ND                |
| Dichlorodifluoromethane                              | ug/l         |           |        | ND                | ND                |
| Benzene                                              | ug/l         | 1         | p      | ND                | ND                |
| Toluene                                              | ug/l         | 1750      | _      | ND                | ND                |
| n,p-Xylenes                                          | ug/l         | 150       | р      | ND                | ND                |
| Ethyl benzene                                        | ug/l         | 700       | p      | ND                | ND                |
|                                                      |              |           |        |                 | 3.700           |                 |                 |                 |                 |                   |                   |
| MTBE<br>Perchlorate                                  | ug/L         | 13        | p      | ND                | ND                |

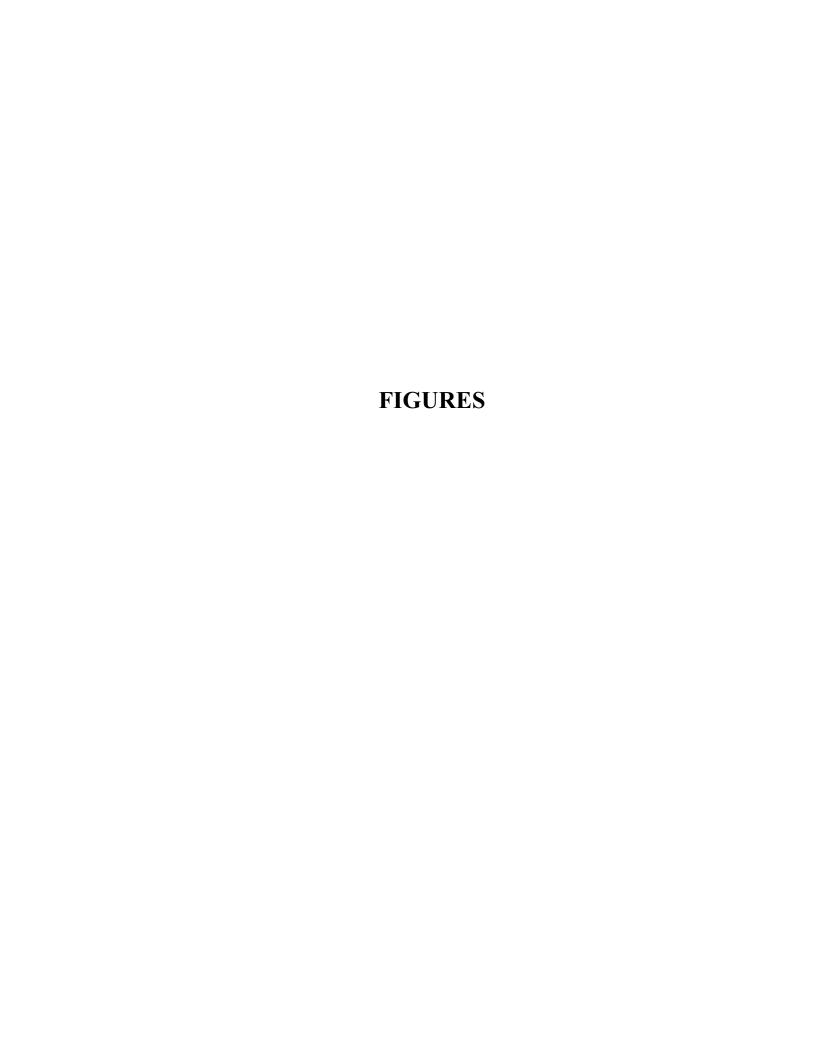
#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 13 of 15

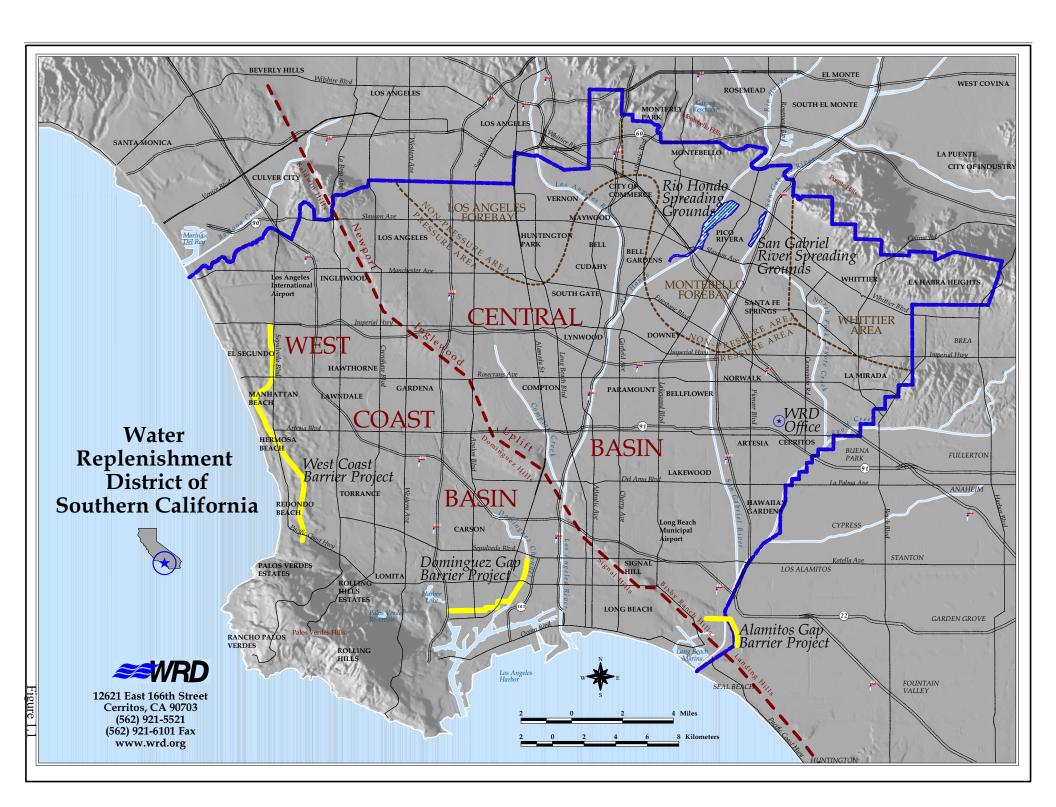
|                                             |                                      |                    |          |                      |                   | 1 age 13          |                   |                   |                   |                   |                   |                   |                   |
|---------------------------------------------|--------------------------------------|--------------------|----------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Water Quality Constituents                  |                                      |                    | lype     | Westchester<br>#1    | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 | Westchester<br>#1 |
|                                             | Units                                | MCL                | MCL Type | Zone 1               | Zone 1            | Zone 2            | Zone 2            | Zone 3            | Zone 3            | Zone 4            | Zone 4            | Zone 5            | Zone 5            |
| C IM: I                                     | n                                    | Σ                  | Σ        | 5/11/04              | 9/15/04           | 5/11/04           | 9/15/04           | 5/11/04           | 9/15/04           | 5/11/04           | 9/15/04           | 5/11/04           | 9/15/04           |
| General Mineral Total Dissolved Solid (TDS) | m \( \alpha / 1                      | 1000               | s        | 1380                 | 1390              | 720               | 730               | 600               | 620               | 580               | 590               | 550               | 560               |
| Cation Sum                                  | mg/l<br>meq/l                        | 1000               | 8        | 22.6                 | 23                | 13                | 12.9              | 10.6              | 10.9              | 10.5              | 10.5              | 9.9               | 10.1              |
|                                             | meq/1                                |                    |          | 22.4                 | 22.1              | 12.6              | 12.9              | 10.6              | 10.9              | 10.3              | 10.3              | 9.69              | 9.62              |
| Anion Sum                                   |                                      | 0.2                |          |                      |                   | 0.14              |                   | 0.29              | 0.27              |                   |                   | 0.28              | 0.29              |
| Iron, Total, ICAP Manganese, Total, ICAP/MS | mg/l                                 | 50                 | S        | 0.28<br><b>56</b>    | 0.28<br><b>55</b> | 62                | 0.13<br><b>61</b> | 200               | 180               | 0.15<br>120       | 0.15<br>130       | 230               | 230               |
| <u> </u>                                    | ug/l                                 | -                  | s        |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Turbidity                                   | NTU                                  | 5                  | s        | 1.2                  | 1                 | 1.3               | 2.9               | 0.7               | 0.3               | 0.4               | 0.55              | 0.8               | 0.75              |
| Alkalinity                                  | mg/l                                 |                    | ╄        | 938                  | 905               | 532               | 504               | 407               | 404               | 349               | 330               | 309               | 295               |
| Boron                                       | mg/l                                 |                    | $\vdash$ | 2.3                  | 2.4               | 0.85              | 0.83              | 0.36              | 0.4               | 0.25              | 0.24              | 0.23              | 0.22              |
| Bicarbonate as HCO3,calculated              | mg/l                                 |                    | -        | 1140                 | 1100              | 647               | 613               | 495               | 492               | 424               | 402               | 376               | 359               |
| Calcium, Total, ICAP                        | mg/l                                 |                    | $\vdash$ | 20                   | 19                | 31                | 31                | 53                | 52                | 71                | 71                | 67                | 68                |
| Carbonate as CO3, Calculated                | mg/l                                 |                    | -        | 5.88                 | 14.3              | 4.2               | 5.02              | 3.22              | 3.2               | 3.47              | 2.61              | 1.54              | 1.85              |
| Hardness (Total, as CaCO3)                  | mg/l                                 |                    |          | 108                  | 105               | 152               | 147               | 231               | 225               | 297               | 297               | 278               | 281               |
| Chloride                                    | mg/l                                 | 250                | +-       | 130                  | 140               | 68                | 67                | 65                | 71                | 62                | 69                | 67                | 73                |
| Fluoride                                    | mg/l                                 | 2                  | p        | 0.26                 | 0.26              | 0.26              | 0.25              | 0.28              | 0.27              | 0.26              | 0.25              | 0.33              | 0.31              |
| Hydroxide as OH, Calculated                 | mg/l                                 |                    |          | 0.01                 | 0.03              | 0.02              | 0.02              | 0.02              | 0.02              | 0.02              | 0.02              | 0.01              | 0.01              |
| Langelier Index - 25 degree                 | None                                 |                    |          | 0.81                 | 1.2               | 0.86              | 0.93              | 0.97              | 0.96              | 1.1               | 1                 | 0.76              | 0.84              |
| Magnesium, Total, ICAP                      | mg/l                                 |                    |          | 14                   | 14                | 18                | 17                | 24                | 23                | 29                | 29                | 27                | 27                |
| Mercury                                     | ug/l                                 | 2                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Nitrate-N by IC                             | mg/l                                 | 10                 | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Nitrite, Nitrogen by IC                     | mg/l                                 | 1                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Potassium, Total, ICAP                      | mg/l                                 |                    |          | 18                   | 19                | 15                | 15                | 11                | 12                | 9.3               | 9.5               | 7.6               | 7.8               |
| Sodium, Total, ICAP                         | mg/l                                 |                    |          | 460                  | 470               | 220               | 220               | 130               | 140               | 99                | 100               | 95                | 98                |
| Sulfate                                     | mg/l                                 | 250                | s        | ND                   | ND                | ND                | ND                | 28                | 16                | 69                | 73                | 77                | 79                |
| Surfactants                                 | mg/l                                 | 0.5                | s        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Total Nitrate, Nitrite-N, CALC              | mg/l                                 | 10                 | р        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Total Organic Carbon                        | mg/l                                 |                    | 1        | 43.2                 | 31                | 7.9               | 8                 | 3                 | 3.4               | 1.8               | 1.7               | 1.4               | 1.4               |
| Carbon Dioxide                              | mg/l                                 |                    |          | 28.7                 | 11                | 12.9              | 9.74              | 9.9               | 9.84              | 6.74              | 8.04              | 11.9              | 9.04              |
| General Physical                            |                                      |                    | -        |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Apparent Color                              | ACU                                  | 15                 | s        | 700                  | 500               | 80                | 60                | 20                | 20                | 10                | 10                | 10                | 5                 |
| Lab pH                                      | Units                                | 15                 | 1 3      | 7.9                  | 8.3               | 8                 | 8.1               | 8                 | 8                 | 8.1               | 8                 | 7.8               | 7.9               |
| Odor                                        | TON                                  | 3                  | s        | 8                    | 3                 | 8                 | 3                 | 17                | 4                 | 8                 | 1                 | 17                | 4                 |
| pH of CaCO3 saturation(25C)                 | Units                                | 3                  | 1 3      | 7.087                | 7.125             | 7.143             | 7.166             | 7.026             | 7.037             | 6.966             | 6.99              | 7.044             | 7.057             |
| pH of CaCO3 saturation(60C)                 | Units                                |                    |          | 6.6                  | 6.7               | 6.7               | 6.7               | 6.6               | 6.6               | 6.5               | 6.5               | 6.6               | 6.6               |
| Specific Conductance                        | ımho/cr                              | <u></u>            | -        | 2060                 | 2040              | 1160              | 1140              | 988               | 976               | 957               | 934               | 915               | 895               |
| Metal                                       | IIIIIO/CI                            | 11                 | +        | 2000                 | 2040              | 1100              | 1140              | 900               | 970               | 937               | 934               | 913               | 893               |
|                                             | /1                                   | 1000               |          | ND                   | ND                | ND                | ND                | NID               | ND                | ND                | ND                | ND                | ND                |
| Aluminum, Total, ICAP/MS                    | ug/1                                 | 1000               | + -      | ND<br>ND             | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          |                   | ND<br>ND          |
| Antimony, Total, ICAP/MS                    | ug/1                                 | 6                  | p        | ND<br>ND             | ND<br>ND          | ND<br>ND          | ND<br>ND          | 1.1               | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>2.7         | 1.8               |
| Arsenic, Total, ICAP/MS                     | ug/l                                 | 50                 | p        |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Barium, Total, ICAP/MS                      | ug/l                                 | 1000               | + -      | 67                   | 83<br>ND          | 120               | 130               | 57                | 60<br>ND          | 67                | 74                | 51<br>ND          | 60                |
| Beryllium, Total, ICAP/MS                   | ug/l                                 | 4                  | p        | ND                   | ND                | ND                | ND<br>5.0         | ND 7              | ND<br>4.2         | ND                | ND                | ND<br>5.0         | ND<br>2.0         |
| Chromium, Total, ICAP/MS                    | ug/l                                 | 50                 | p        | 3.7                  | ND                | 1.5               | 5.8               | 7                 | 4.2               | 6                 | 3.4               | 5.9               | 2.8               |
| Hexavalent Chromium (Cr VI)                 | mg/l                                 | _                  | -        |                      | 3.75              |                   | 3.75              |                   | 3.75              |                   |                   |                   |                   |
| Cadmium, Total, ICAP/MS                     | ug/l                                 | 5                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Copper, Total, ICAP/MS                      | ug/l                                 | 1000               | s        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Lead, Total, ICAP/MS                        | ug/l                                 |                    |          | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Nickel, Total, ICAP/MS                      | ug/l                                 | 100                | + -      | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Selenium, Total, ICAP/MS                    | ug/l                                 | 50                 | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Silver, Total, ICAP/MS                      | ug/l                                 | 100                | _        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Thallium, Total, ICAP/MS                    | ug/l                                 | 2                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Zinc, Total, ICAP/MS                        | ug/l                                 | 5000               | s        | 11                   | ND                | 7                 | ND                | 16                | ND                | ND                | ND                | ND                | ND                |
| Volatile Organic Compounds                  |                                      |                    | 匸        |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Trichloroethylene (TCE)                     | ug/l                                 | 5                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Tetrachloroethylene (PCE)                   | ug/l                                 | 5                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| 1,1-Dichloroethylene                        | ug/l                                 | 6                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| cis-1,2-Dichloroethylene                    | ug/l                                 | 6                  | p        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Carbon Tetrachloride                        | ug/l                                 | 0.5                | р        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| 1,1-Dichloroethane                          | ug/l                                 | 100                | -        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| 1,2-Dichloroethane                          | ug/l                                 | 0.5                | р        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Fluorotrichloromethane-Freon11              | ug/l                                 | 150                | +        | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| Isopropylbenzene                            | ug/1                                 | 150                | I P      | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
| n-Propylbenzene                             | ug/1                                 |                    |          | ND                   | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                | ND                |
|                                             |                                      |                    |          | ND<br>ND             | ND                | ND<br>ND          |
|                                             |                                      |                    |          | INIZ                 | ND                | ND                |                   |                   |                   |                   |                   |                   |                   |
| Dichlorodifluoromethane<br>Benzene          | ug/l                                 | 1                  | -        |                      | ND                | NID               | ND                | NID               | ND                | ND                | NID               | ND                |                   |
| Benzene                                     | ug/l<br>ug/l                         | 1                  | p        | ND                   | ND                | ND                | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND                |
| Benzene<br>Toluene                          | ug/l<br>ug/l<br>ug/l                 | 1750               | р        | ND<br>ND             | ND                |
| Benzene<br>Toluene<br>m,p-Xylenes           | ug/l<br>ug/l<br>ug/l<br>ug/l         | 1750<br>150        | p<br>p   | ND<br>ND<br>ND       | ND<br>ND          |
| Benzene Toluene m,p-Xylenes Ethyl benzene   | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | 1750<br>150<br>700 | p<br>p   | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND    |
| Benzene<br>Toluene<br>m,p-Xylenes           | ug/l<br>ug/l<br>ug/l<br>ug/l         | 1750<br>150        | p<br>p   | ND<br>ND<br>ND       | ND<br>ND          |

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 14 of 15

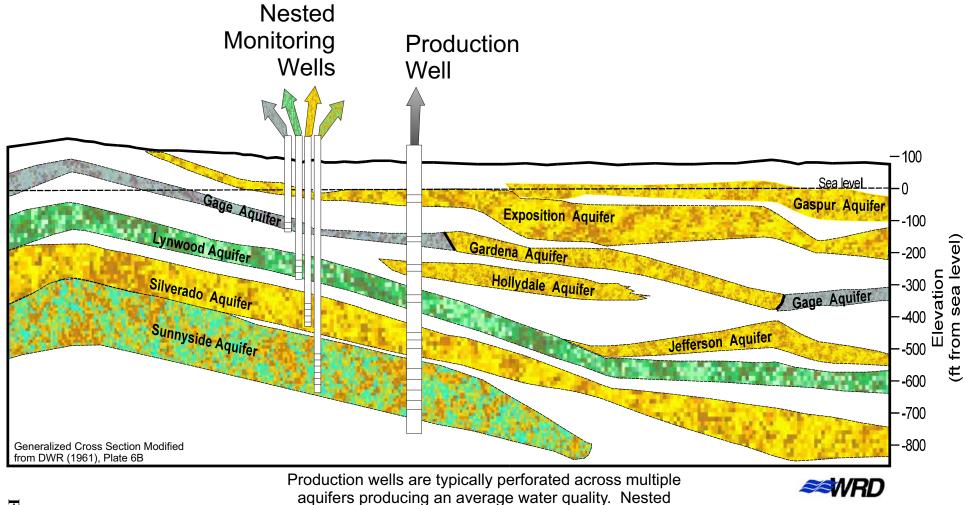
| Water Quality Constituents                          |                  |           | MCL Type | Wilmington<br>#1 | Wilmington<br>#1 | #1                | Wilmington<br>#1  | #1                | #1                | Wilmington<br>#1  | #1                | Wilmington<br>#1 | Wilmington<br>#1 |
|-----------------------------------------------------|------------------|-----------|----------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
|                                                     | Units            | MCL       | ICL      | Zone 1           | Zone 1           | Zone 2            | Zone 2            | Zone 3            | Zone 3            | Zone 4            | Zone 4            | Zone 5           | Zone 5           |
| General Mineral                                     | n                | 2         | 2        | 4/8/04           | 9/9/04           | 4/8/04            | 9/9/04            | 4/8/04            | 9/9/04            | 4/8/04            | 9/9/04            | 4/8/04           | 9/9/04           |
| Total Dissolved Solid (TDS)                         | mg/l             | 1000      | s        | 600              | 670              | 1440              | 1410              | 1440              | 1800              | 1690              | 1740              | 920              | 1000             |
| Cation Sum                                          | meq/l            |           |          | 10               | 10.2             | 22.5              | 20.2              | 22.3              | 26.3              | 27.5              | 27.6              | 15.3             | 16.3             |
| Anion Sum                                           | meq/l            |           |          | 9.82             | 9.94             | 23.5              | 20.3              | 23.1              | 27.3              | 27.8              | 28.7              | 14.6             | 16.1             |
| Iron, Total, ICAP                                   | mg/l             | 0.3       | S        | 0.013            | ND               | 0.045             | 0.037             | 0.011             | ND                | 0.021             | 0.024             | 0.16             | 0.13             |
| Manganese, Total, ICAP/MS Turbidity                 | ug/l<br>NTU      | 50        | S        | 26<br>0.25       | 0.2              | 26<br>0.1         | 0.15              | 8.1<br>0.3        | 8.8<br>0.4        | 23<br>0.15        | 0.35              | <b>78</b>        | 73<br>10         |
| Alkalinity                                          | mg/l             | 3         | 8        | 138              | 130              | 138               | 135               | 137               | 138               | 147               | 142               | 174              | 184              |
| Boron                                               | mg/l             |           |          | 0.14             | 0.14             | 0.21              | 0.2               | 0.24              | 0.24              | 0.27              | 0.26              | 0.22             | 0.23             |
| Bicarbonate as HCO3,calculated                      | mg/l             |           |          | 168              | 158              | 168               | 164               | 167               | 168               | 179               | 173               | 212              | 224              |
| Calcium, Total, ICAP                                | mg/l             |           |          | 61               | 63               | 190               | 170               | 150               | 190               | 120               | 130               | 110              | 110              |
| Carbonate as CO3, Calculated                        | mg/l             |           |          | 1.37             | 1.29             | 0.867             | 0.847             | 0.172             | 0.218             | 1.16              | 0.893             | 0.69             | 1.46             |
| Hardness (Total, as CaCO3) Chloride                 | mg/l<br>mg/l     | 250       | S        | 231<br>250       | 240<br>260       | 660<br><b>680</b> | 585<br><b>570</b> | 539<br><b>710</b> | 672<br><b>870</b> | 473<br><b>710</b> | 518<br><b>740</b> | 431<br>290       | 435<br>330       |
| Fluoride                                            | mg/l             | 2         | p        | 0.15             | 0.13             | 0.07              | 0.07              | 0.08              | 0.07              | 0.09              | 0.09              | 0.11             | 0.1              |
| Hydroxide as OH, Calculated                         | mg/l             | _         | r        | 0.02             | 0.02             | 0.01              | 0.01              | 0.003             | 0.003             | 0.02              | 0.01              | 0.009            | 0.02             |
| Langelier Index - 25 degree                         | None             |           |          | 0.67             | 0.65             | 0.96              | 0.9               | 0.15              | 0.36              | 0.89              | 0.81              | 0.62             | 0.95             |
| Magnesium, Total, ICAP                              | mg/l             |           |          | 19               | 20               | 45                | 39                | 40                | 48                | 42                | 47                | 38               | 39               |
| Mercury                                             | ug/l             | 2         | p        | ND<br>ND         | ND               | ND                | ND<br>ND          | ND                | ND<br>ND          | ND                | ND<br>ND          | ND               | ND               |
| Nitrate-N by IC Nitrite, Nitrogen by IC             | mg/l<br>mg/l     | 10        | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         |
| Potassium, Total, ICAP                              | mg/l             | 1         | Р        | 7.4              | 7.7              | 7.8               | 7.1               | 8                 | 8.5               | 9.4               | 9.6               | 7.2              | 7.9              |
| Sodium, Total, ICAP                                 | mg/l             |           |          | 120              | 120              | 210               | 190               | 260               | 290               | 410               | 390               | 150              | 170              |
| Sulfate                                             | mg/l             | 250       | S        | ND               | ND               | 74                | 71                | 18                | ND                | 230               | 240               | 140              | 150              |
| Surfactants                                         | mg/l             | 0.5       | s        | 0.29             | 0.504            | 0.44              | 0.382             | 0.459             | 0.457             | 0.202             | 0.351             | 0.831            | 1.14             |
| Total Nitrate, Nitrite-N, CALC                      | mg/l             | 10        | p        | ND<br>3          | ND<br>2.9        | ND<br>2.4         | ND<br>2.1         | ND                | ND<br>2.2         | ND<br>1.0         | ND                | ND<br>5.9        | ND               |
| Total Organic Carbon Carbon Dioxide                 | mg/l<br>mg/l     |           |          | 2.67             | 2.51             | 2.4<br>4.23       | 2.1<br>4.13       | 3.4<br>21.1       | 2.3<br>16.8       | 1.8<br>3.58       | 1.4<br>4.36       | 8.46             | 6.3<br>4.48      |
| General Physical                                    | mg/1             |           |          | 2.07             | 2.51             | 1.23              | 1.13              | 21.1              | 10.0              | 3.30              | 1.50              | 0.10             | 1.10             |
| Apparent Color                                      | ACU              | 15        | s        | 3                | 5                | 5                 | 3                 | 10                | 10                | 3                 | 3                 | 5                | 10               |
| Lab pH                                              | Units            |           |          | 8.1              | 8.1              | 7.9               | 7.9               | 7.2               | 7.3               | 8                 | 7.9               | 7.7              | 8                |
| Odor                                                | TON              | 3         | S        | 100              | 17               | 17                | 40                | 2000              | 17                | 3                 | 67                | 3                | 200              |
| pH of CaCO3 saturation(25C)                         | Units            |           |          | 7.434            | 7.447            | 6.941             | 7                 | 7.046             | 6.941             | 7.113<br>6.7      | 7.093             | 7.077            | 7.053            |
| pH of CaCO3 saturation(60C) Specific Conductance    | Units<br>ımho/cı | n<br>n    |          | 1100             | 1110             | 2410              | 6.6<br>2120       | 6.6<br>2460       | 6.5<br>2780       | 2920              | 6.6<br>2820       | 6.6<br>1560      | 6.6<br>1640      |
| Metal                                               |                  | Ī         |          | 1100             | 1110             | 2110              | 2120              | 2.00              | 2,00              | 2,20              | 2020              | 1500             | 1010             |
| Aluminum, Total, ICAP/MS                            | ug/l             | 1000      | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Antimony, Total, ICAP/MS                            | ug/l             | 6         | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Arsenic, Total, ICAP/MS                             | ug/l             | 50        | p        | 3.2              | ND               | 3.9               | ND                | 4.8               | ND                | 3.6               | ND                | 2.1              | ND               |
| Barium, Total, ICAP/MS<br>Beryllium, Total, ICAP/MS | ug/l<br>ug/l     | 1000      | p<br>p   | 12<br>ND         | 11<br>ND         | 14<br>ND          | 12<br>ND          | 25<br>ND          | 28<br>ND          | 58<br>ND          | 57<br>ND          | 100<br>ND        | 99<br>ND         |
| Chromium, Total, ICAP/MS                            | ug/l             | 50        | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Hexavalent Chromium (Cr VI)                         | mg/l             |           | r        |                  |                  |                   |                   |                   |                   |                   |                   |                  |                  |
| Cadmium, Total, ICAP/MS                             | ug/l             | 5         | р        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Copper, Total, ICAP/MS                              | ug/l             | 1000      | s        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Lead, Total, ICAP/MS                                | ug/l             | 15        |          | ND               | ND               | ND                | ND                | ND<br>5.4         | ND                | ND                | ND                | ND               | ND               |
| Nickel, Total, ICAP/MS<br>Selenium, Total, ICAP/MS  | ug/l<br>ug/l     | 100<br>50 | p<br>p   | ND<br>ND         | ND<br>ND         | 6.5<br>ND         | 6.9<br>ND         | 5.4<br>ND         | 7.5<br>16         | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         |
| Silver, Total, ICAP/MS                              | ug/l             | 100       | s        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND<br>ND         | ND               |
| Thallium, Total, ICAP/MS                            | ug/l             | 2         | р        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Zinc, Total, ICAP/MS                                | ug/l             | 5000      | s        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Volatile Organic Compounds                          |                  |           |          |                  |                  |                   |                   |                   |                   |                   |                   |                  |                  |
| Trichloroethylene (TCE)                             | ug/l             | 5         | p        | ND<br>ND         | ND               | ND                | ND                | ND<br>ND          | ND<br>ND          | ND                | ND                | ND               | ND               |
| Tetrachloroethylene (PCE) 1,1-Dichloroethylene      | ug/l<br>ug/l     | 5         | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND         | ND<br>ND         |
| cis-1,2-Dichloroethylene                            | ug/l             | 6         | p        | ND<br>ND         | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Carbon Tetrachloride                                | ug/l             | 0.5       | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| 1,1-Dichloroethane                                  | ug/l             | 100       | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| 1,2-Dichloroethane                                  | ug/l             | 0.5       | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Fluorotrichloromethane-Freon11                      | ug/l             | 150       | p        | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND               | ND<br>4.6        |
| Isopropylbenzene<br>n-Propylbenzene                 | ug/l<br>ug/l     |           |          | ND<br>ND         | ND<br>ND         | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | ND<br>ND          | 1.8              | 4.6              |
| Dichlorodifluoromethane                             | ug/l             |           |          | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Benzene                                             | ug/l             | 1         | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| Toluene                                             | ug/l             | 1750      | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | ND               |
| m,p-Xylenes                                         | ug/l             | 150       | p        | ND               | ND               | ND                | ND                | ND                | ND                | ND                | ND                | ND               | 0.7              |
| Ethyl benzene MTBE                                  | ug/l             | 700       | p        | ND<br>ND         | ND               | ND<br>ND           ND<br>ND         |
| Perchlorate                                         | ug/L<br>ug/l     | 13        | p<br>p   | ND               | ND               | ND                | ND                | ND                | ND                | ND                | UND               | UND              | ND               |
| - C. Chiorate                                       | ug/1             | U .       | Р        |                  |                  |                   |                   |                   |                   |                   |                   |                  |                  |

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.

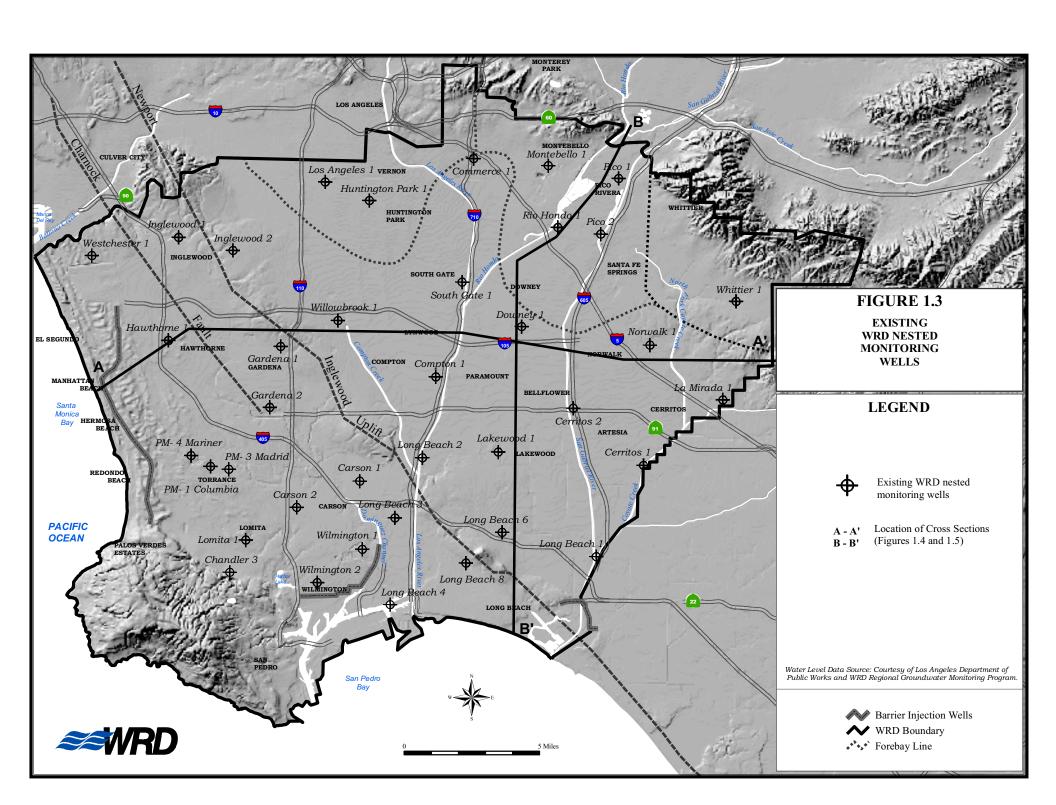

#### **TABLE 4.3** WEST COAST BASIN WATER QUALITY RESULTS **REGIONAL GROUNDWATER MONITORING - WATER YEAR 2003/2004** Page 15 of 15

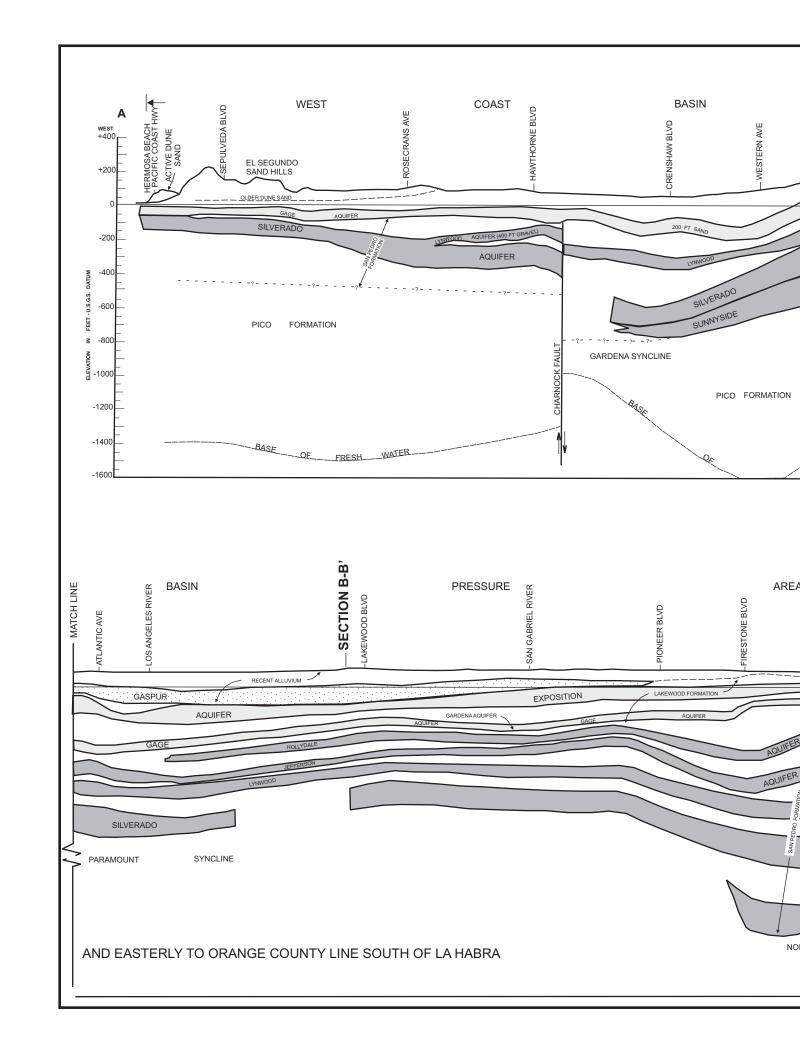

| Water Quality Constituents                       |              |             | MCL Type | Wilmington<br>#2 | Wilmington<br>#2 | #2         | Wilmington<br>#2 | #2          | #2          | Wilmington<br>#2 | #2          | Wilmington<br>#2 | Wilmington<br>#2 |
|--------------------------------------------------|--------------|-------------|----------|------------------|------------------|------------|------------------|-------------|-------------|------------------|-------------|------------------|------------------|
|                                                  | Units        | MCL         | ICL      | Zone 1           | Zone 1<br>9/8/04 | Zone 2     | Zone 2           | Zone 3      | Zone 3      | Zone 4           | Zone 4      | Zone 5           | Zone 5           |
| General Mineral                                  | n            | ≥           | 2        | 4/13/04          | 9/8/04           | 3/16/04    | 8/31/04          | 4/13/04     | 9/8/04      | 4/13/04          | 9/8/04      | 4/13/04          | 9/8/04           |
| Total Dissolved Solid (TDS)                      | mg/l         | 1000        | s        | 540              | 540              | 1400       | 1430             | 440         | 430         | 2270             | 2230        | 7910             | 7540             |
| Cation Sum                                       | meq/l        |             |          | 8.75             | 9.19             | 24.2       | 25               | 7.27        | 7.63        | 35.9             | 35.4        | 117              | 114              |
| Anion Sum                                        | meq/l        |             |          | 8.5              | 8.46             | 25.1       | 24.9             | 7.44        | 7.3         | 36.2             | 36          | 116              | 127              |
| Iron, Total, ICAP                                | mg/l         | 0.3         | s        | 0.077            | 0.086            | 0.077      | 0.082            | 0.026       | 0.022       | 0.01             | 0.029       | 0.034            | 0.024            |
| Manganese, Total, ICAP/MS                        | ug/l         | 50          | s        | 5                | 5.1              | 16         | 21               | 13          | 13          | 24               | 21          | 100              | 110              |
| Turbidity                                        | NTU          | 5           | S        | 1                | 1.7              | 1          | 0.6              | 0.35        | 0.5         | 0.35             | 0.6         | 3.9              | 1.8              |
| Alkalinity                                       | mg/l         |             |          | 366              | 364              | 464        | 438<br>1.7       | 202         | 195<br>0.27 | 257<br>0.53      | 246<br>0.71 | 181              | 174              |
| Boron Bicarbonate as HCO3,calculated             | mg/l<br>mg/l |             |          | 0.61<br>441      | 0.66<br>441      | 1.7<br>564 | 532              | 0.24<br>245 | 237         | 313              | 300         | 0.64<br>221      | 0.64<br>212      |
| Calcium, Total, ICAP                             | mg/l         |             |          | 3.3              | 3.4              | 32         | 35               | 29          | 29          | 140              | 130         | 430              | 410              |
| Carbonate as CO3, Calculated                     | mg/l         |             |          | 14.4             | 9.06             | 4.61       | 5.48             | 2.52        | 2.44        | 1.02             | 0.617       | 0.72             | 0.69             |
| Hardness (Total, as CaCO3)                       | mg/l         |             |          | 17.7             | 18               | 175        | 190              | 118         | 114         | 621              | 576         | 1900             | 1770             |
| Chloride                                         | mg/l         | 250         | s        | 40               | 40               | 560        | 570              | 120         | 120         | 1100             | 1100        | 3600             | 4000             |
| Fluoride                                         | mg/l         | 2           | p        | 0.96             | 0.97             | 0.33       | 0.33             | 0.23        | 0.23        | 0.3              | 0.32        | 0.19             | 0.17             |
| Hydroxide as OH, Calculated                      | mg/l         |             |          | 0.09             | 0.05             | 0.02       | 0.03             | 0.03        | 0.03        | 0.009            | 0.005       | 0.009            | 0.009            |
| Langelier Index - 25 degree                      | None<br>mg/l |             |          | 0.42             | 0.23<br>2.3      | 0.91       | 25               | 0.61        | 0.59        | 0.9              | 0.65        | 1.2              | 1.2              |
| Magnesium, Total, ICAP Mercury                   | mg/l<br>ug/l | 2           | р        | 2.3<br>ND        | ND               | ND         | ND               | ND          | ND          | 66<br>ND         | ND          | ND               | ND               |
| Nitrate-N by IC                                  | mg/l         | 10          | p        | ND               | ND               | ND         | ND               | ND          | ND<br>ND    | ND               | ND<br>ND    | ND<br>ND         | ND               |
| Nitrite, Nitrogen by IC                          | mg/l         | 1           | р        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Potassium, Total, ICAP                           | mg/l         |             | Ĺ        | 5.1              | 5.1              | 12         | 12               | 5.3         | 5.3         | 15               | 14          | 32               | 27               |
| Sodium, Total, ICAP                              | mg/l         |             |          | 190              | 200              | 470        | 480              | 110         | 120         | 530              | 540         | 1800             | 1800             |
| Sulfate                                          | mg/l         | 250         | s        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | 540              | 500              |
| Surfactants                                      | mg/l         | 0.5         | s        | ND               | ND               | 0.087      | ND               | ND          | ND          | 0.064            | ND          | ND               | ND               |
| Total Nitrate, Nitrite-N, CALC                   | mg/l         | 10          | p        | ND               | ND               | ND         | ND               | ND          | ND<br>2.0   | ND               | ND<br>5.0   | ND               | ND               |
| Total Organic Carbon Carbon Dioxide              | mg/l         |             |          | 17.2<br>1.76     | 9.5<br>2.79      | 8<br>8.96  | 17.4<br>6.71     | 4.2<br>3.09 | 3.8<br>2.99 | 3.9<br>12.5      | 5.9<br>19   | 1.5<br>8.82      | 1.5<br>8.46      |
| General Physical                                 | mg/l         | 1           |          | 1.70             | 2.19             | 8.90       | 0.71             | 3.09        | 2.99        | 12.3             | 19          | 0.02             | 0.40             |
| Apparent Color                                   | ACU          | 15          | s        | 300              | 300              | 120        | 120              | 35          | 25          | 50               | 50          | 15               | 10               |
| Lab pH                                           | Units        |             |          | 8.7              | 8.5              | 8.1        | 8.2              | 8.2         | 8.2         | 7.7              | 7.5         | 7.7              | 7.7              |
| Odor                                             | TON          | 3           | s        | 8                | 8                | 4          | 8                | 4           | 4           | 400              | 400         | 8                | 3                |
| pH of CaCO3 saturation(25C)                      | Units        |             |          | 8.282            | 8.269            | 7.189      | 7.175            | 7.593       | 7.608       | 6.803            | 6.854       | 6.467            | 6.506            |
| pH of CaCO3 saturation(60C)                      | Units        |             |          | 7.8              | 7.8              | 6.7        | 6.7              | 7.1         | 7.2         | 6.4              | 6.4         | 6                | 6.1              |
| Specific Conductance                             | ımho/cı      | m           |          | 840              | 760              | 2420       | 2540             | 780         | 726         | 3920             | 3520        | 11700            | 10800            |
| Metal Aluminum, Total, ICAP/MS                   | na/1         | 1000        |          | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Antimony, Total, ICAP/MS                         | ug/l<br>ug/l | 6           | p<br>p   | ND               | ND               | ND         | ND<br>ND         | ND          | ND<br>ND    | ND               | ND<br>ND    | ND<br>ND         | ND               |
| Arsenic, Total, ICAP/MS                          | ug/l         | 50          | р        | ND               | ND               | ND         | 4.1              | ND          | 1.5         | 5.1              | ND          | 21               | ND               |
| Barium, Total, ICAP/MS                           | ug/l         | 1000        | p        | 5.6              | 5.8              | 48         | 57               | 14          | 13          | 100              | 99          | 95               | 93               |
| Beryllium, Total, ICAP/MS                        | ug/l         | 4           | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Chromium, Total, ICAP/MS                         | ug/l         | 50          | p        | 1.8              | 2.2              | ND         | 4.2              | ND          | ND          | 1.6              | ND          | ND               | ND               |
| Hexavalent Chromium (Cr VI)                      | mg/l         |             |          |                  |                  |            |                  |             |             |                  |             |                  |                  |
| Cadmium, Total, ICAP/MS                          | ug/l         | 5           | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Copper, Total, ICAP/MS<br>Lead, Total, ICAP/MS   | ug/l<br>ug/l | 1000        | S        | 2.1<br>ND        | 3.7<br>ND        | ND<br>ND   | ND<br>ND         | ND<br>ND    | ND<br>ND    | ND<br>ND         | ND<br>ND    | ND<br>ND         | ND<br>ND         |
| Nickel, Total, ICAP/MS                           | ug/l<br>ug/l | 100         | р        | ND<br>ND         | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND<br>ND    | ND<br>ND    | ND<br>ND         | 5.3         | ND<br>8          | ND<br>ND         |
| Selenium, Total, ICAP/MS                         | ug/l         | 50          | р        | ND               | ND               | ND         | ND               | ND          | ND          | 21               | ND          | ND               | ND               |
| Silver, Total, ICAP/MS                           | ug/l         | 100         | s        | ND               | 7.4              | ND         | ND               | ND          | ND          | ND               | 3.6         | ND               | ND               |
| Thallium, Total, ICAP/MS                         | ug/l         | 2           | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Zinc, Total, ICAP/MS                             | ug/l         | 5000        | s        | ND               | 8.1              | ND         | 6                | ND          | ND          | ND               | 6.3         | ND               | ND               |
| Volatile Organic Compounds                       |              |             |          |                  |                  |            |                  |             |             |                  |             |                  |                  |
| Trichloroethylene (TCE)                          | ug/l         | 5           | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Tetrachloroethylene (PCE)                        | ug/l         | 5           | p        | ND               | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND          | ND<br>ND    | ND               | ND<br>ND    | ND<br>ND         | ND<br>ND         |
| 1,1-Dichloroethylene<br>cis-1,2-Dichloroethylene | ug/l<br>ug/l | 6           | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND<br>ND    | ND<br>ND    | ND<br>ND         | ND<br>ND    | ND<br>ND         | ND<br>ND         |
| Carbon Tetrachloride                             | ug/l         | 0.5         | p        | ND               | ND               | ND         | ND               | ND          | ND<br>ND    | ND               | ND<br>ND    | ND<br>ND         | ND               |
| 1,1-Dichloroethane                               | ug/l         | 100         | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| 1,2-Dichloroethane                               | ug/l         | 0.5         | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Fluorotrichloromethane-Freon11                   | ug/l         | 150         | р        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Isopropylbenzene                                 | ug/l         |             |          | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| n-Propylbenzene                                  | ug/l         |             |          | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Dichlorodifluoromethane                          | ug/l         |             |          | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Benzene                                          | ug/l         | 1750        | p        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Toluene<br>m,p-Xylenes                           | ug/l<br>ug/l | 1750<br>150 | p<br>p   | ND<br>ND         | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND<br>ND    | ND<br>ND    | ND<br>ND         | ND<br>ND    | ND<br>ND         | ND<br>ND         |
| Ethyl benzene                                    | ug/l         | 700         | p        | ND<br>ND         | ND<br>ND         | ND<br>ND   | ND<br>ND         | ND<br>ND    | ND<br>ND    | ND               | ND<br>ND    | ND<br>ND         | ND<br>ND         |
| MTBE                                             | ug/L         | 13          | р        | ND               | ND               | ND         | ND               | ND          | ND          | ND               | ND          | ND               | ND               |
| Perchlorate                                      | ug/l         | 6           | р        |                  |                  |            |                  |             |             |                  |             |                  |                  |
|                                                  |              |             |          |                  |                  |            |                  |             |             |                  |             |                  |                  |

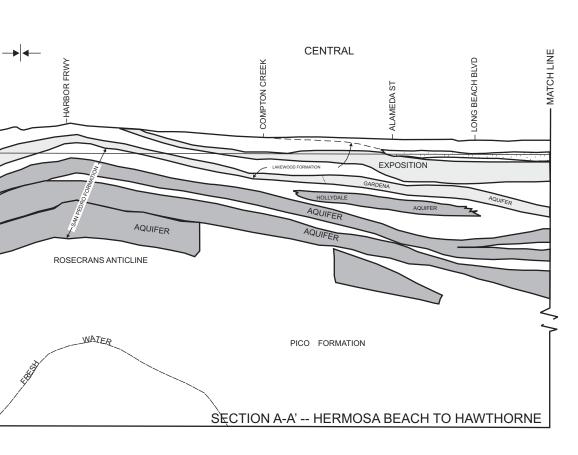
MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL.


TABLE 4.4
Priority Contaminated Sites in Central and West Coast Basins

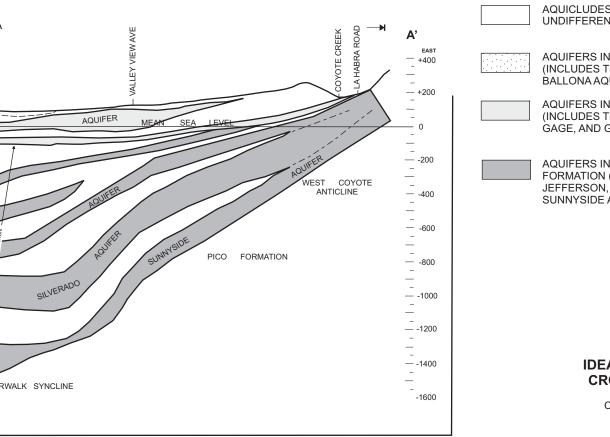
| Map Number<br>(See Figure 4.33) | Site Name                         | City              | Lead Agnency |
|---------------------------------|-----------------------------------|-------------------|--------------|
| 1                               | Angeles Chemical Company Inc      | Santa Fe Springs  | DTSC         |
| 2                               | McKesson Chemical Company         | Santa Fe Springs  | DTSC         |
| 3                               | Basin By-Products                 | Wilmington        | DTSC         |
| 4                               | Montrose Chemical Corporation     | Torrance          | DTSC         |
| 5                               | Stauffer Chemical                 | Carson            | DTSC         |
| 6                               | Chrome Crankshaft                 | Bell Gardens      | DTSC         |
| 7                               | J&S Chrome Plating                | Bell Gardens      | DTSC         |
| 8                               | Wilmington/Gramercy Right-of-Way  | Los Angeles       | DTSC         |
| 9                               | Hard Chrome Products              | Los Angeles       | DTSC         |
| 10                              | Los Angeles Academy               | Los Angeles       | DTSC         |
| 11                              | Ashland Chemical                  | Santa Fe Springs  | RWQCB-LA     |
| 12                              | Boeing Realty Corp C-1 Facility   | Long Beach        | RWQCB-LA     |
| 13                              | Boeing Realty Corp C-6 Facility   | Los Angeles       | RWQCB-LA     |
| 14                              | Honeywell El Segundo              | El Segundo        | RWQCB-LA     |
| 15                              | Honeywell Sepulveda               | Los Angeles       | RWQCB-LA     |
| 16                              | Industrial Polychemical           | Gardena           | RWQCB-LA     |
| 17                              | Master Sun Cleaners               | Gardena           | RWQCB-LA     |
| 18                              | Soco-Lynch                        | Vernon            | RWQCB-LA     |
| 19                              | Trico Industries                  | Torrance          | RWQCB-LA     |
| 20                              | TRW Hawthorne Facility            | Hawthorne         | RWQCB-LA     |
| 21                              | Golden West Refinery              | Santa Fe Springs  | RWQCB-LA     |
| 22                              | Thrifty Oil Service Station #10   | Montebello        | RWQCB-LA     |
| 23                              | Thrifty Oil Service Station #289  | Pico Rivera       | RWQCB-LA     |
| 24                              | ARCO Whittier Whittier            |                   | RWQCB-LA     |
| 25                              | Cooper Drum Company               | South Gate        | EPA          |
| 26                              | Del Amo Facility                  | Los Angeles       | EPA          |
| 27                              | Omega Chemical                    | Whittier          | EPA          |
| 28                              | Operating Industries Inc Landfill | Monterey Park     | EPA          |
| 29                              | Pemaco Maywood                    | Maywood           | EPA          |
| 30                              | Waste Disposal Inc                | Santa Fe Springs  | EPA          |
| 31                              | Former Fairchild Controls         | Manhattan Beach   | RWQCB-LA     |
| 32                              | Cenco Refinery                    | Santa Fe Springs  | RWQCB-LA     |
| 33                              | ExxonMobil Torrance               | Torrance          | RWQCB-LA     |
| 34                              | Shell Oil Products US             | Carson/Wilmington | RWQCB-LA     |
| 35                              | BP/ARCO                           | Carson            | RWQCB-LA     |
| 36                              | Conoco Phillips                   | Carson            | RWQCB-LA     |





# NESTED WELLS versus PRODUCTION WELLS FOR AQUIFER-SPECIFIC DATA




monitoring wells are screened in a portion of a specific aquifer, providing water quality and water level information for the specific zone.





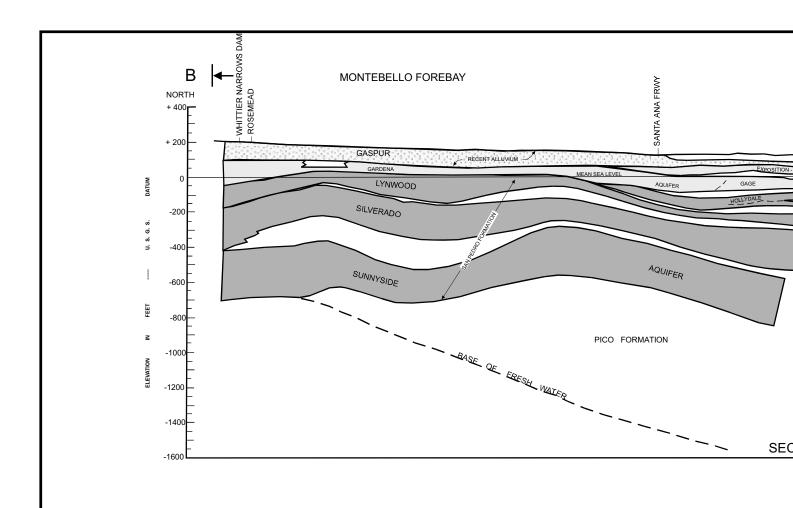


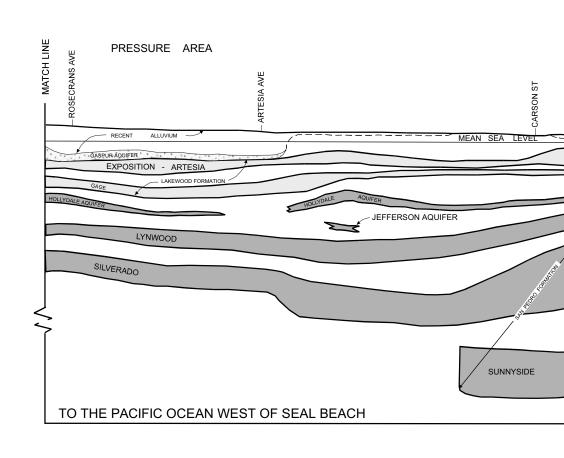
### **LEGEND**

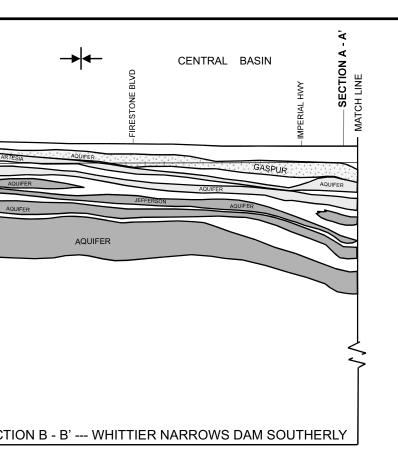


AQUICLUDES AND DEEPER UNDIFFERENTIATED FORMATIONS

AQUIFERS IN RECENT ALLUVIUM (INCLUDES THE GASPUR AND BALLONA AQUIFERS)


> AQUIFERS IN LAKEWOOD FORMATION (INCLUDES THE ARTESIA, EXPOSITION, GAGE, AND GARDENA AQUIFERS)


AQUIFERS IN THE SAN PEDRO FORMATION (INCLUDES THE HOLLYDALE, JEFFERSON, LYNWOOD, SILVERADO AND SUNNYSIDE AQUIFERS)


> **IDEALIZED GEOLOGIC CROSS SECTION AA'**

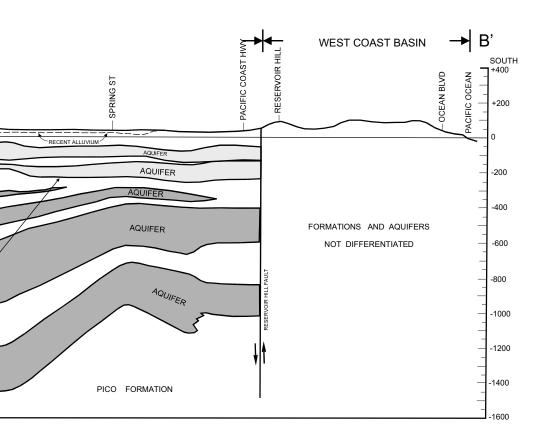
Adapted from CDWR Bull. 104 App. B

FIGURE 1.4





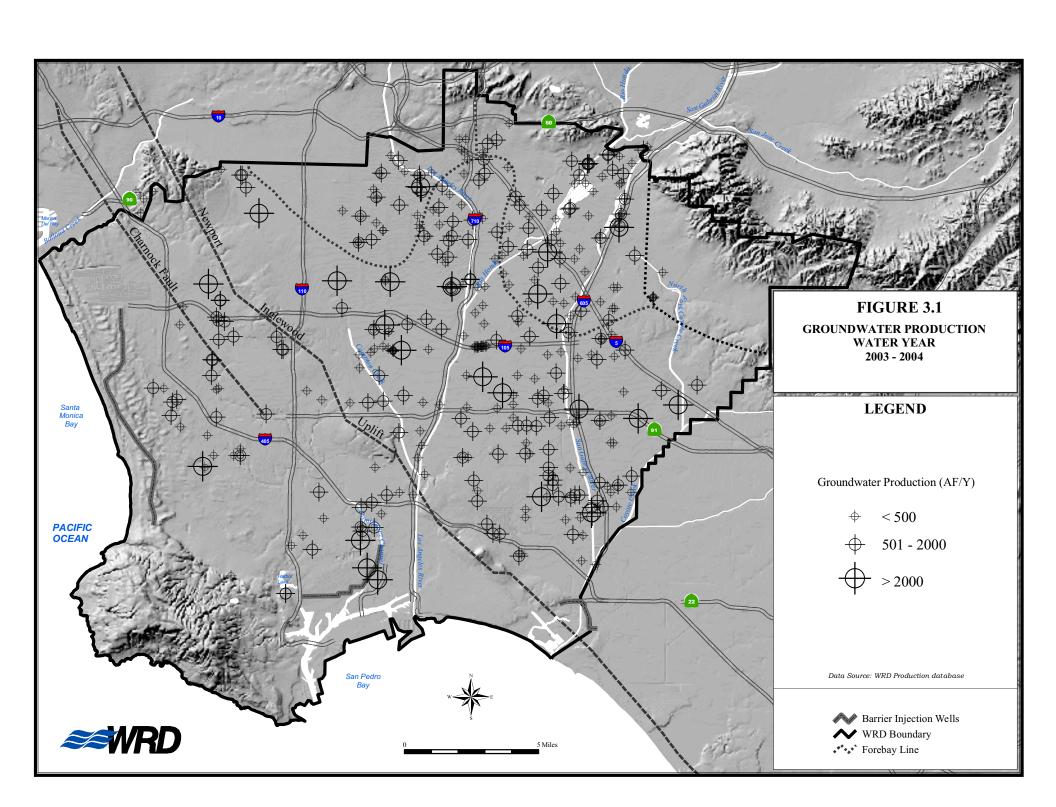


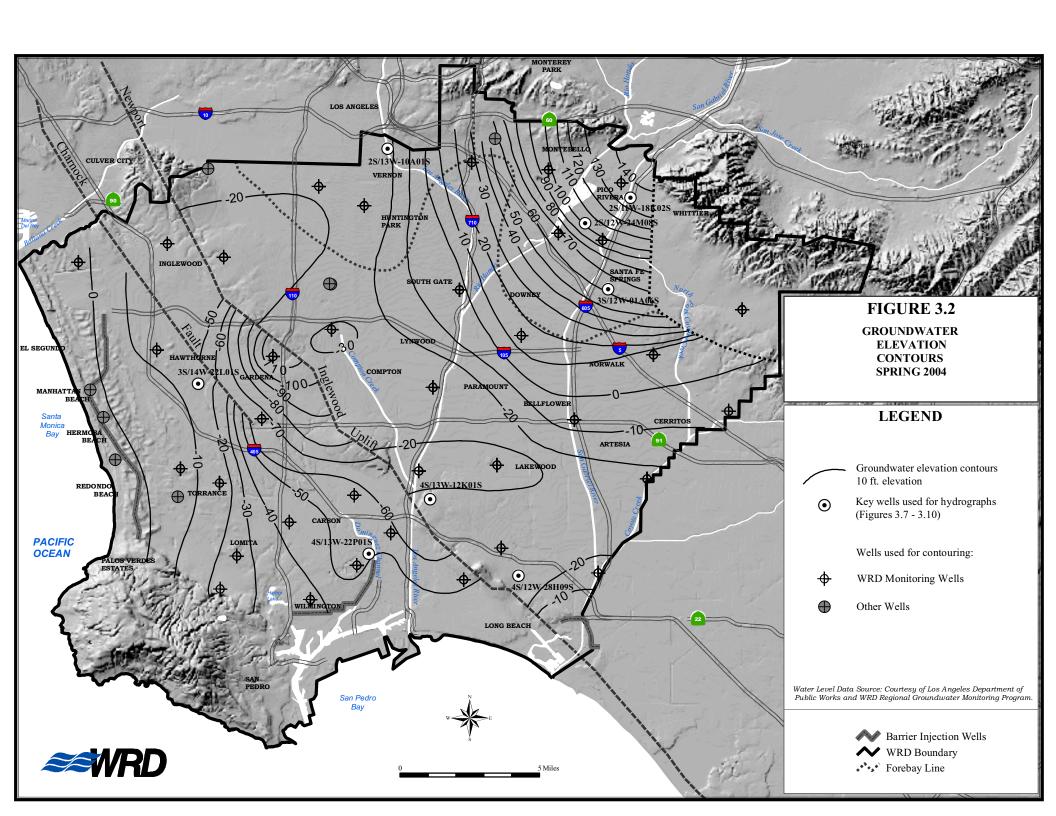

### **LEGEND**

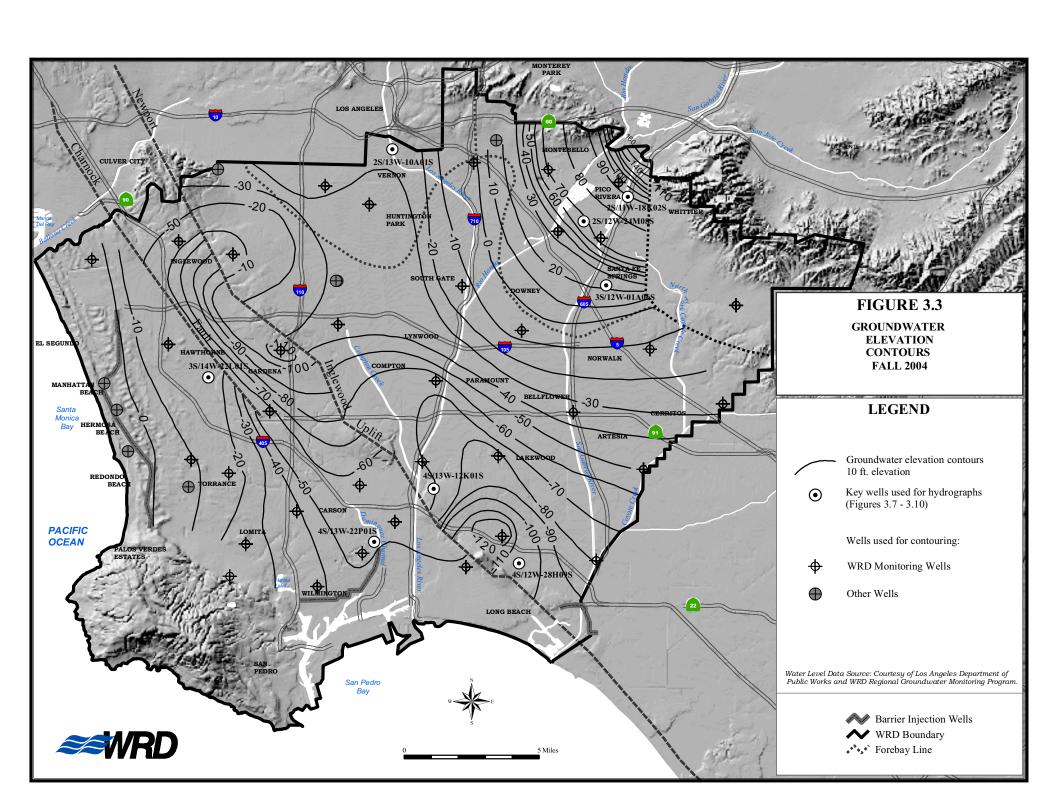
AQUIFERS IN RECENT ALLUVIUM (INCLUDES THE GASPUR AND BALLONA AQUIFERS)

AQUIFERS IN LAKEWOOD FORMATION (INCLUDES THE ARTESIA, EXPOSITION, GAGE, AND GARDENA AQUIFERS)

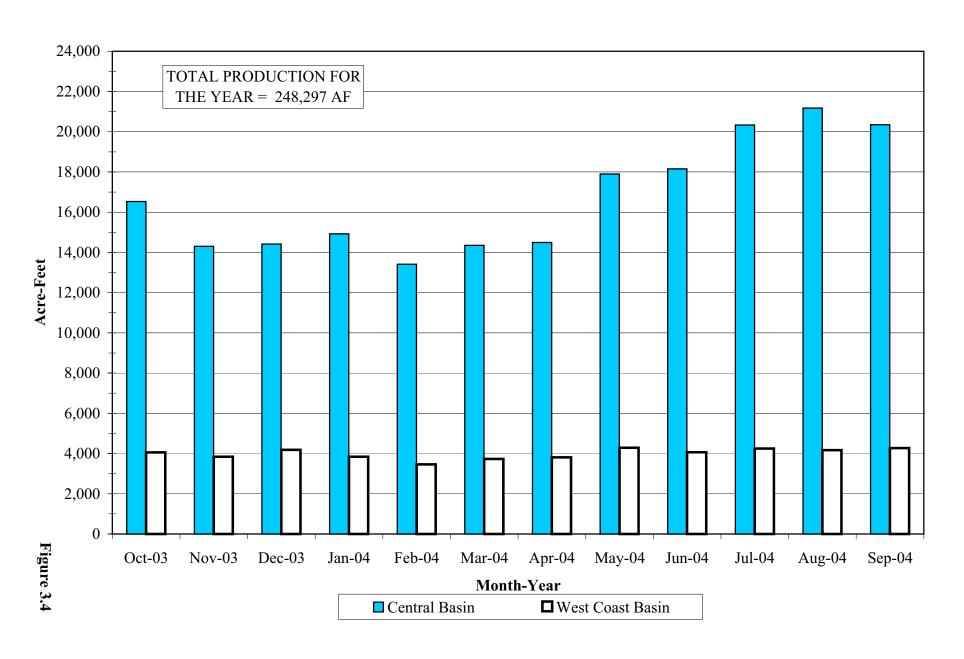
AQUICLUDES AND DEEPER UNDIFFERENTIATED

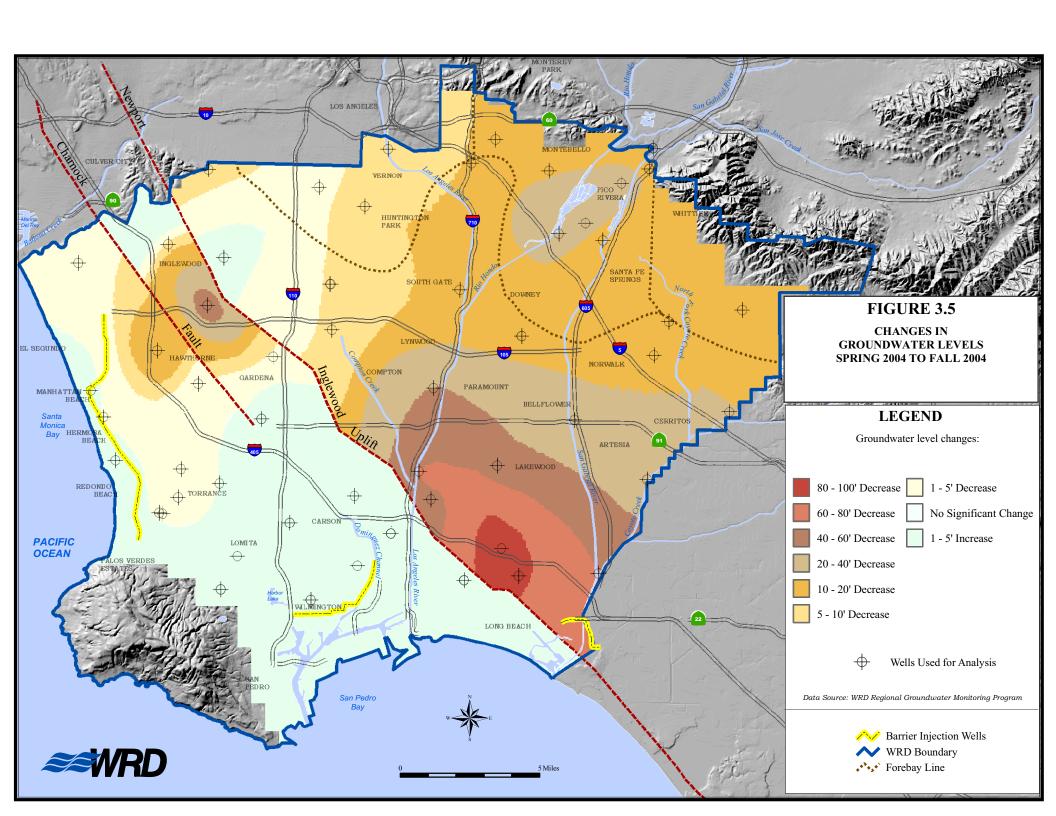

AQUIFERS IN THE SAN PEDRO FORMATIO (INCLUDES THE HOLLYDALE, JEFFERSON, LYNWOOD, SILVERADO AND SUNNYSIDE AQUIFERS)

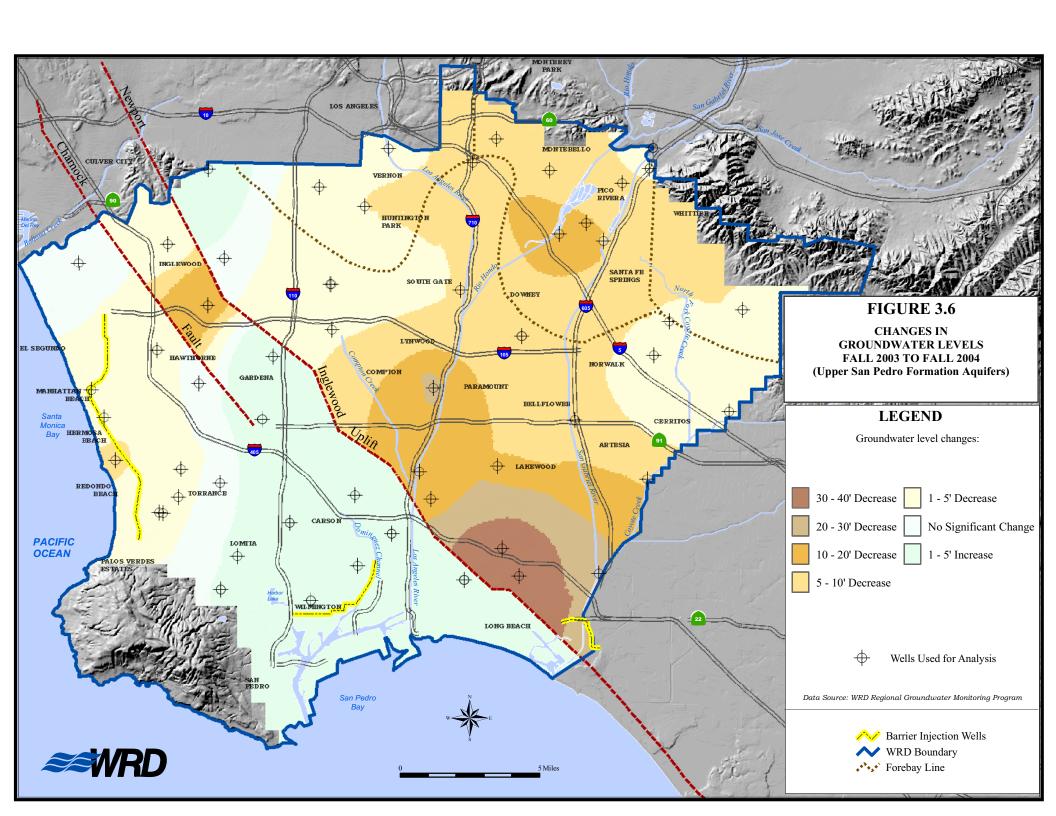




IDEALIZED GEOLOGIC CROSS SECTION BB'

Adapted from CDWR Bull. 104 App. B


FIGURE 1.5






### Monthly Groundwater Production Water Year 2003-2004







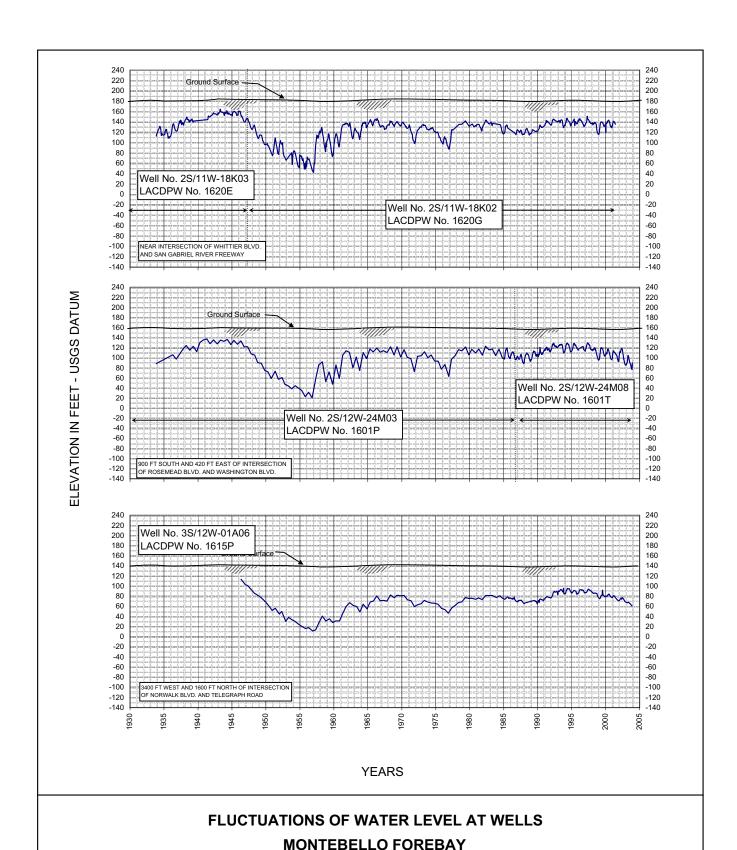
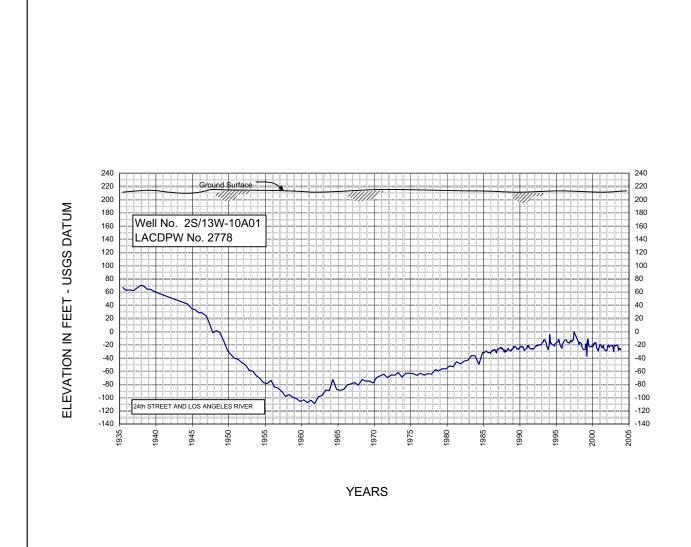
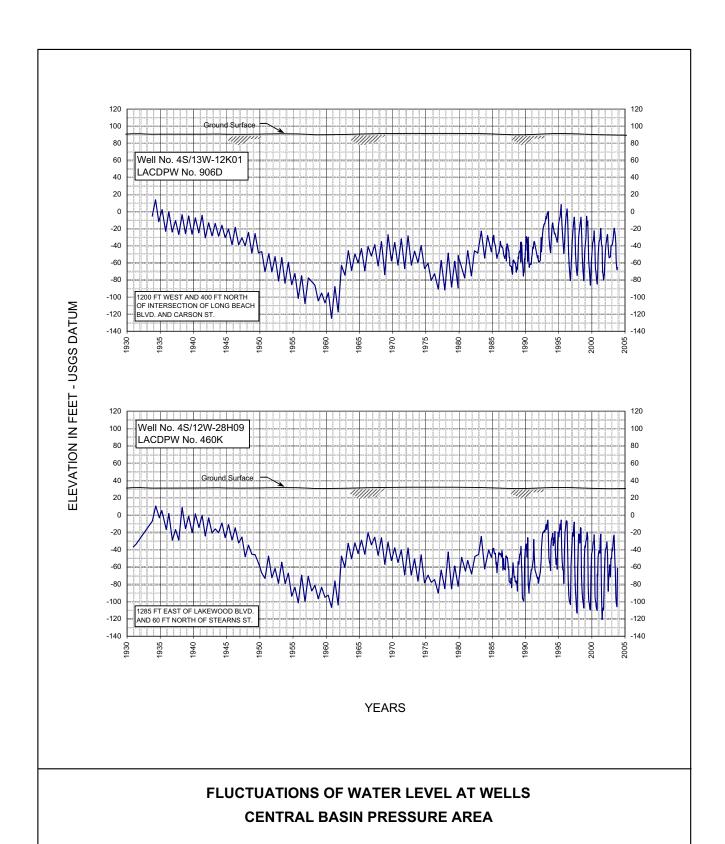





Figure 3.7



## FLUCTUATIONS OF WATER LEVEL AT WELLS LOS ANGELES FOREBAY



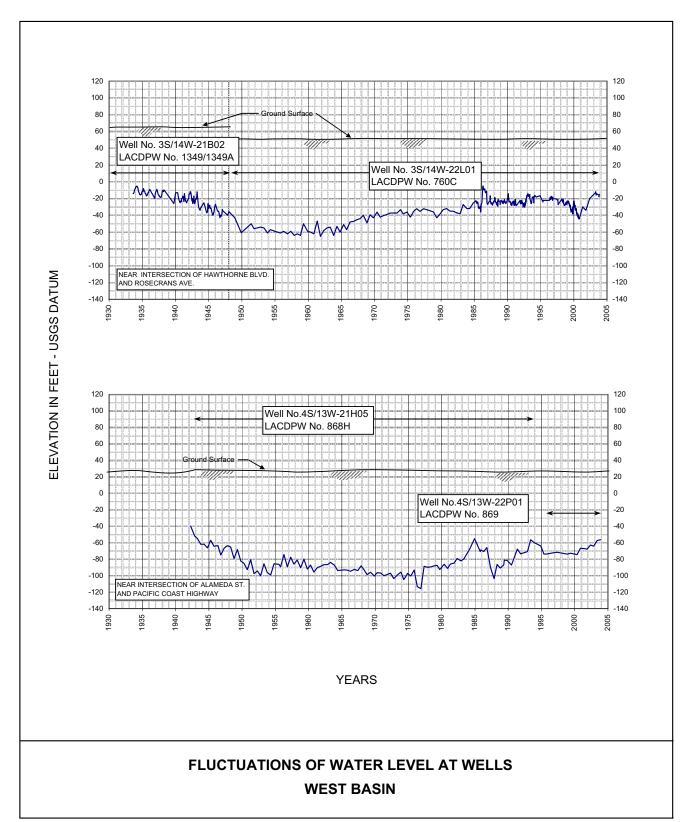
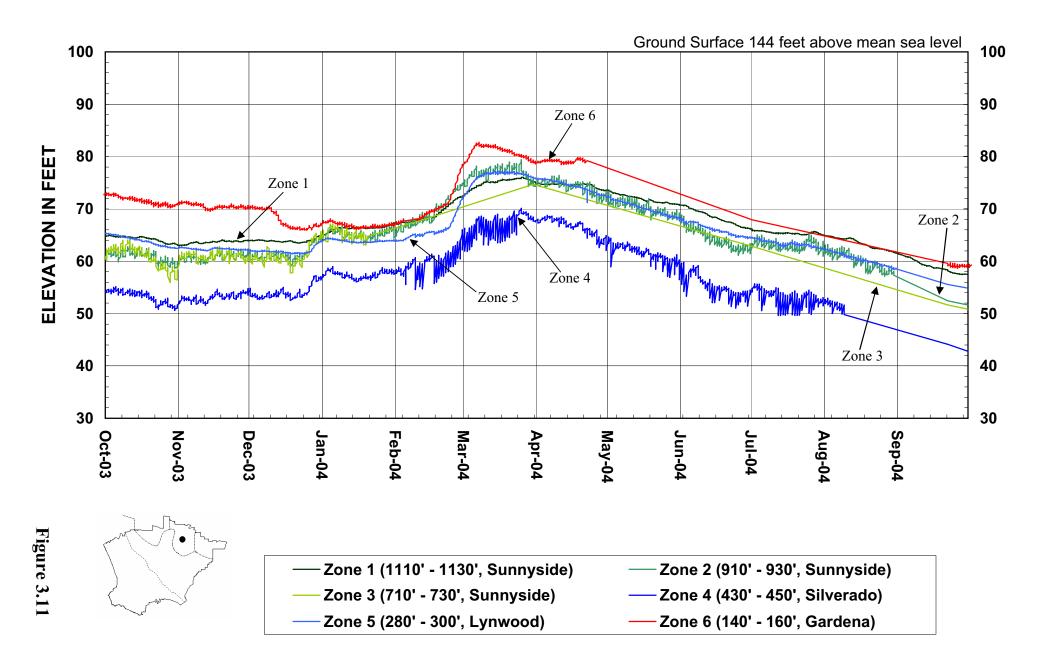
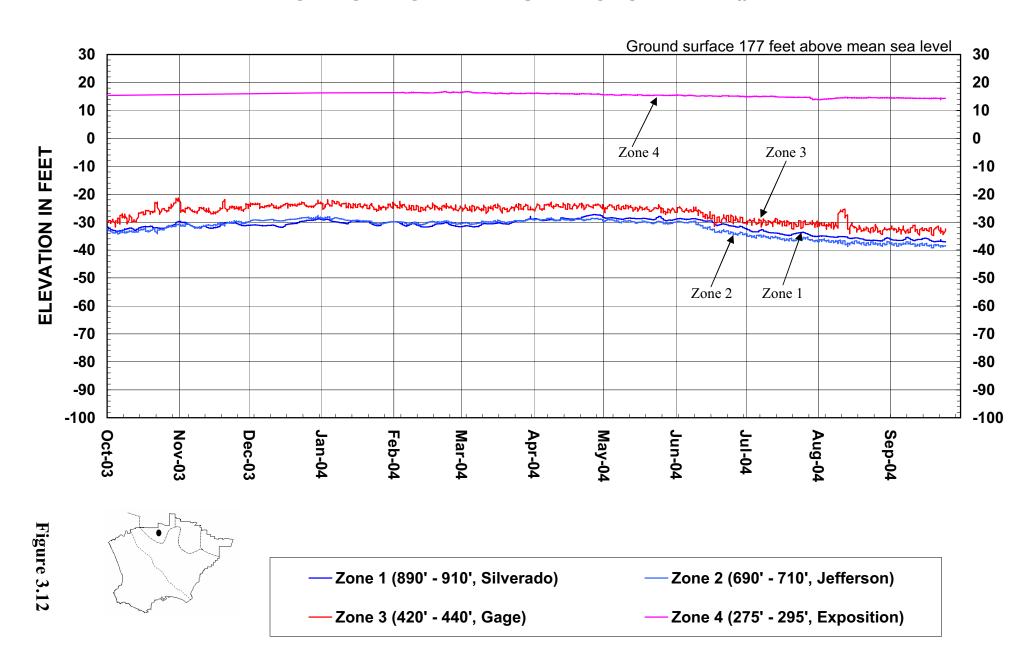





Figure 3.10

# FLUCTUATIONS OF WATER LEVELS IN WRD NESTED MONITORING WELL RIO HONDO #1



# FLUCTUATIONS OF WATER LEVELS IN WRD NESTED MONITORING WELL HUNTINGTON PARK #1



# FLUCTUATIONS OF WATER LEVELS IN WRD NESTED MONITORING WELL LONG BEACH #1

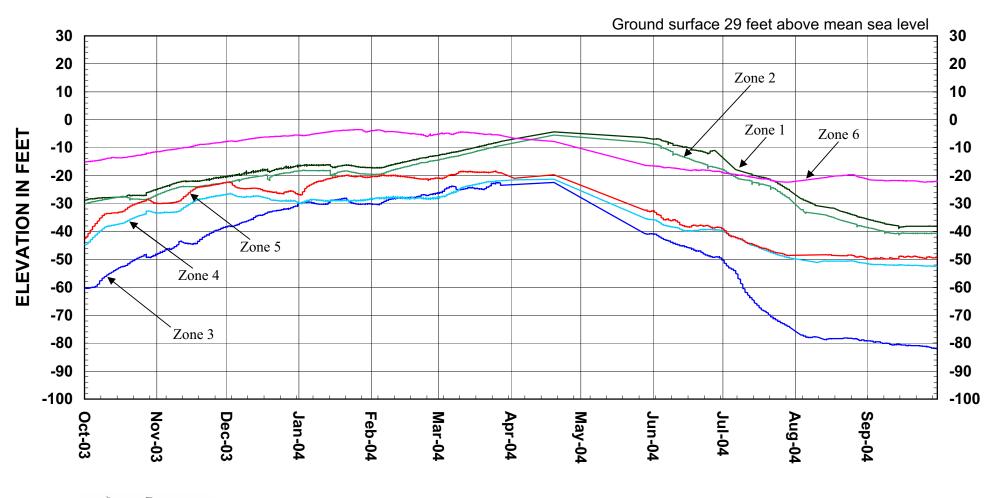
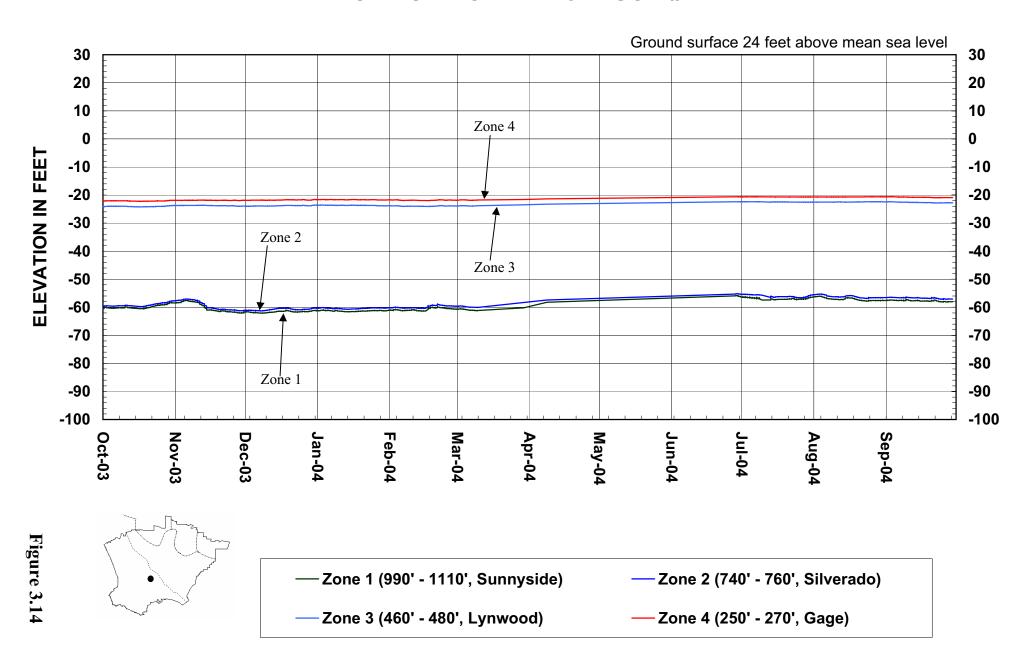


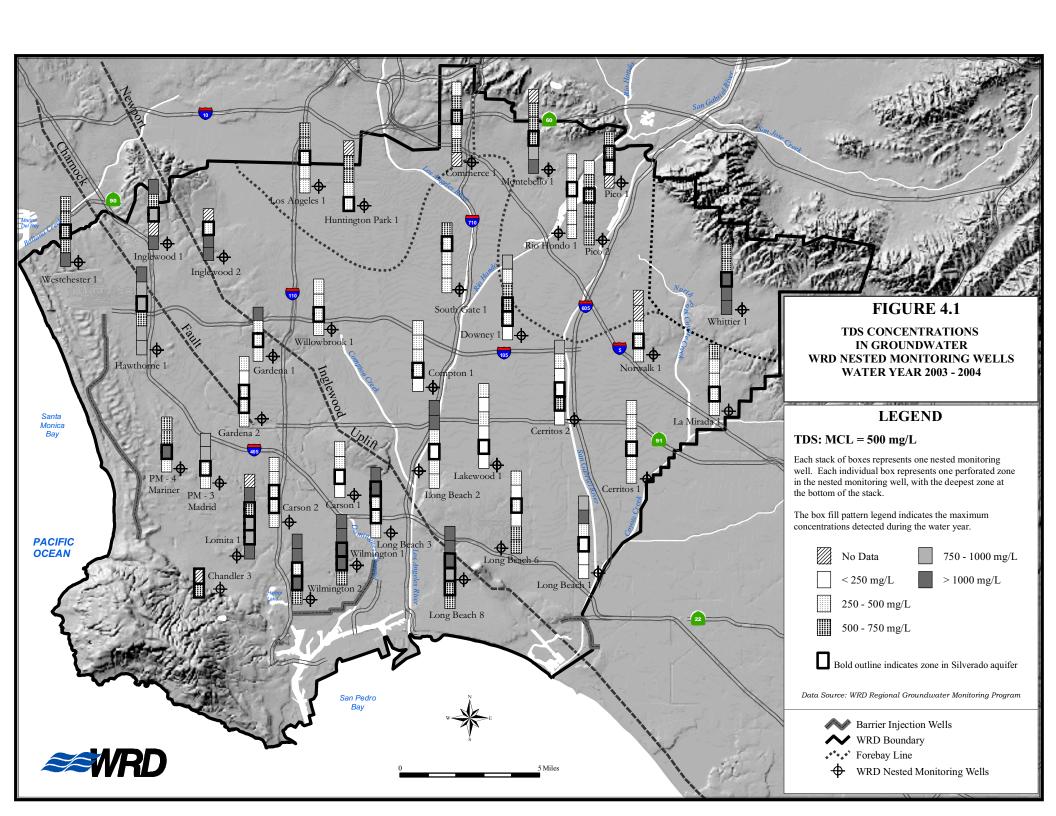

Figure 3.13

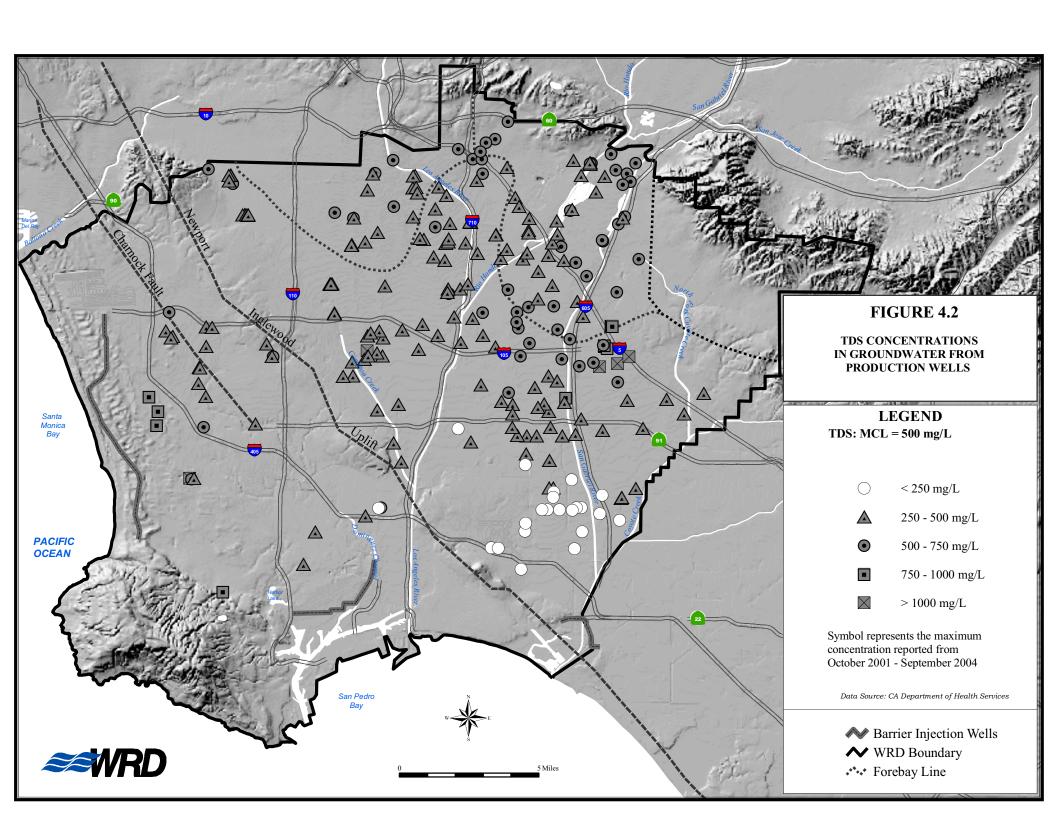


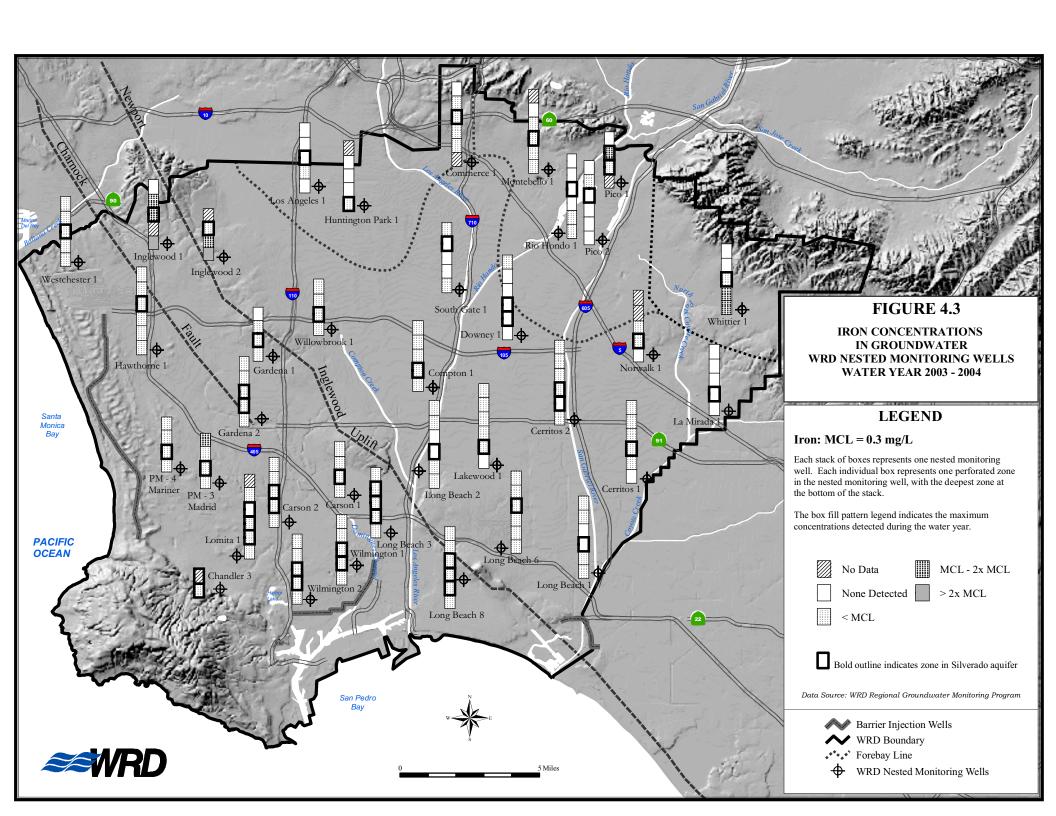
— Zone 1 (1430' - 1450', Sunnyside)

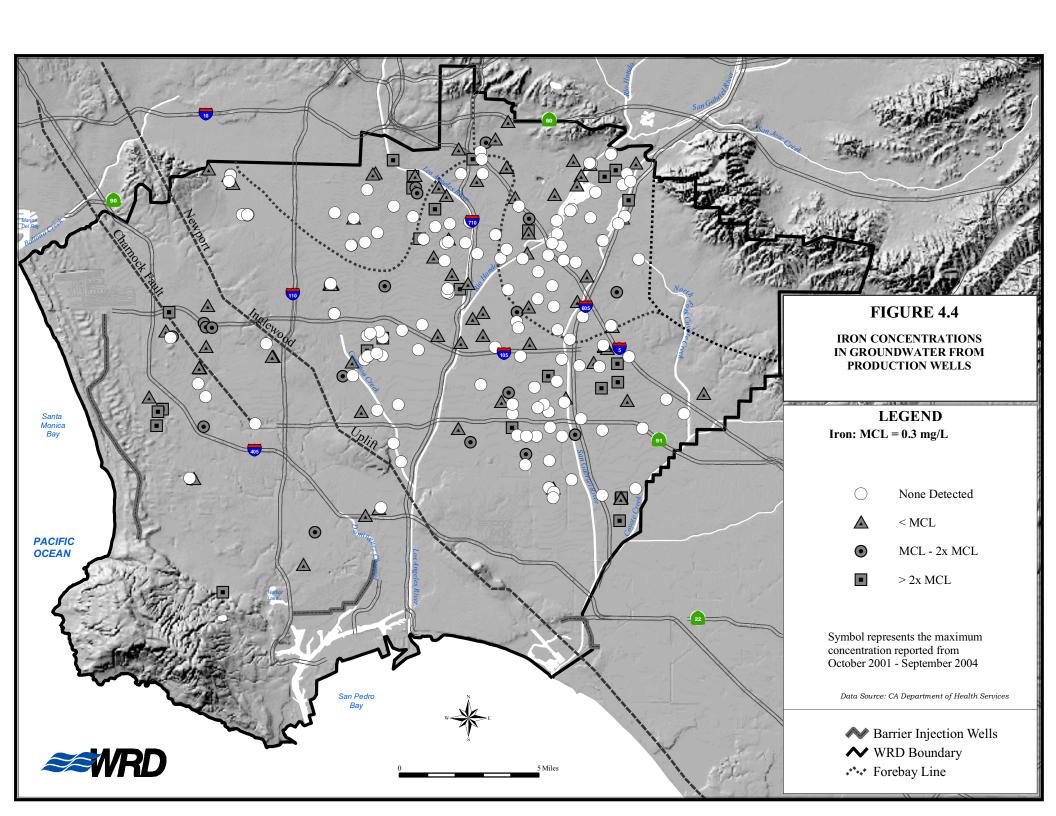
Zone 2 (1230' - 1250', Sunnyside)

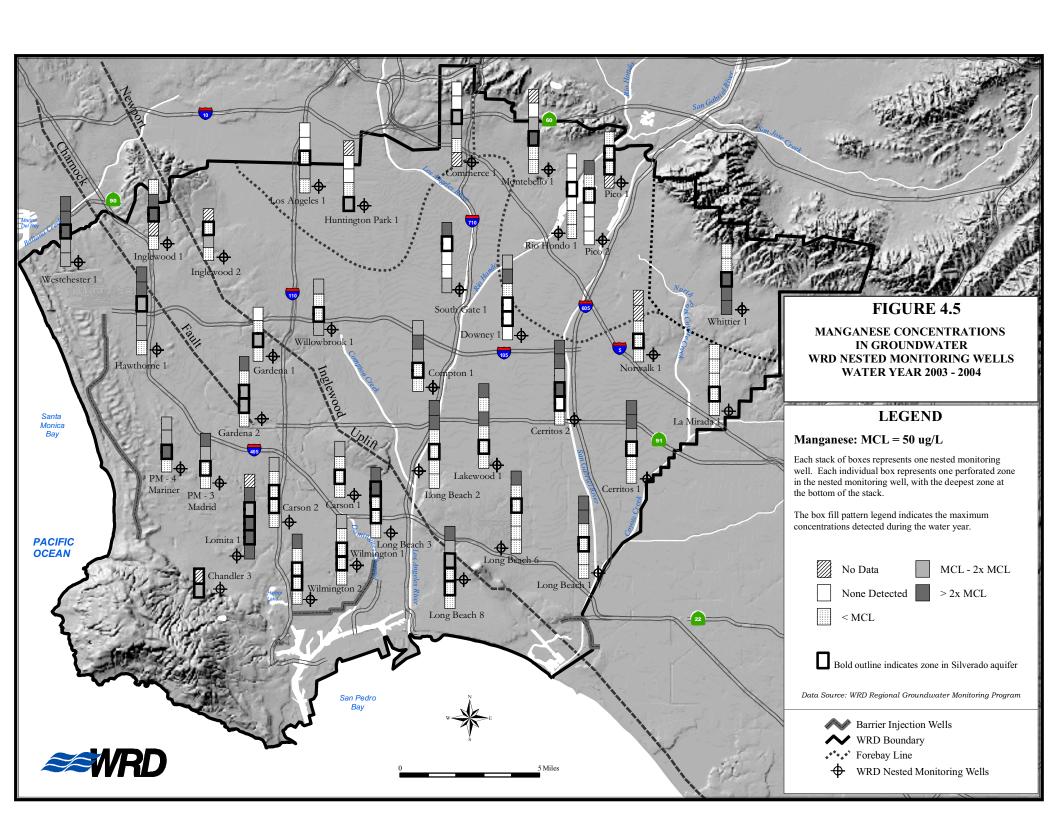

— Zone 3 (970' - 990', Silverado)

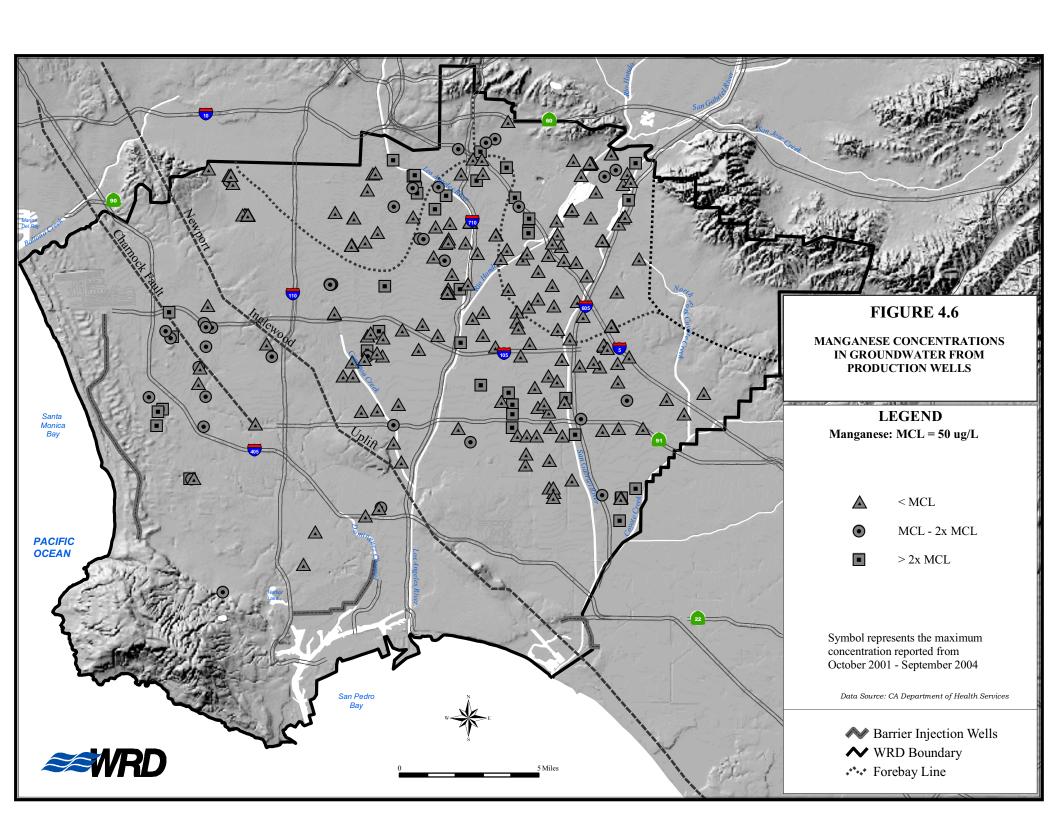

Zone 4 (599' - 619', Lynwood)

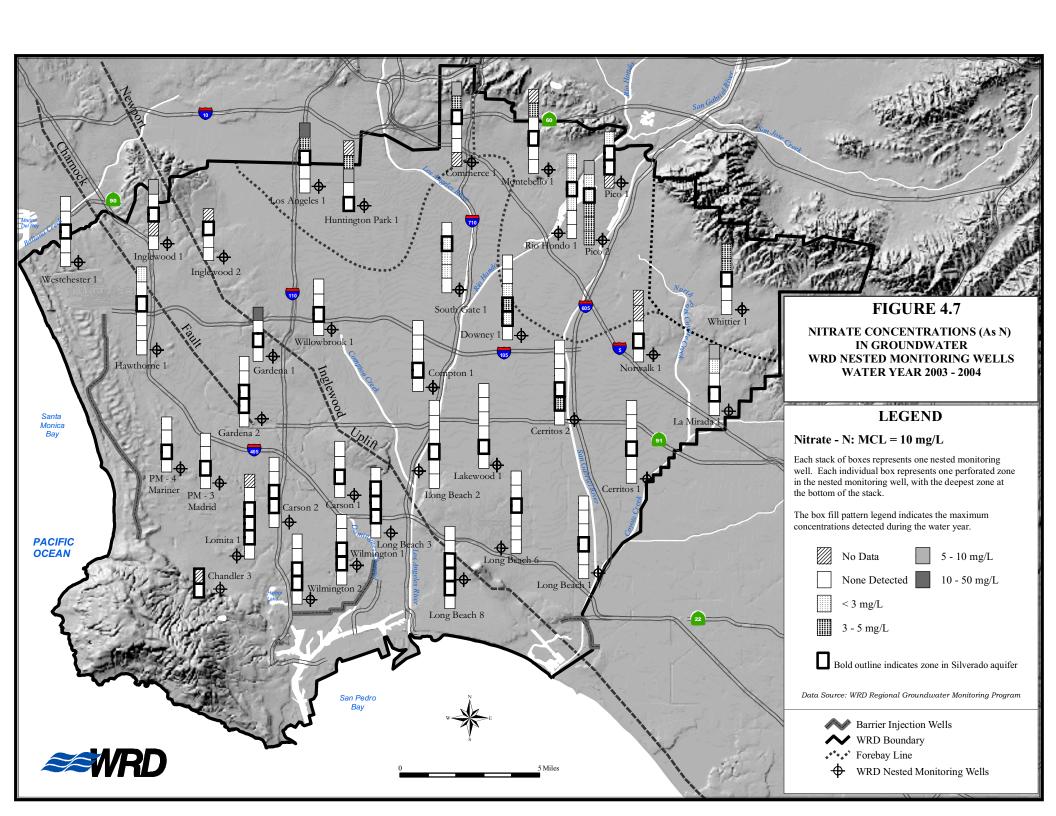

- Zone 5 (400' - 420', Gage)

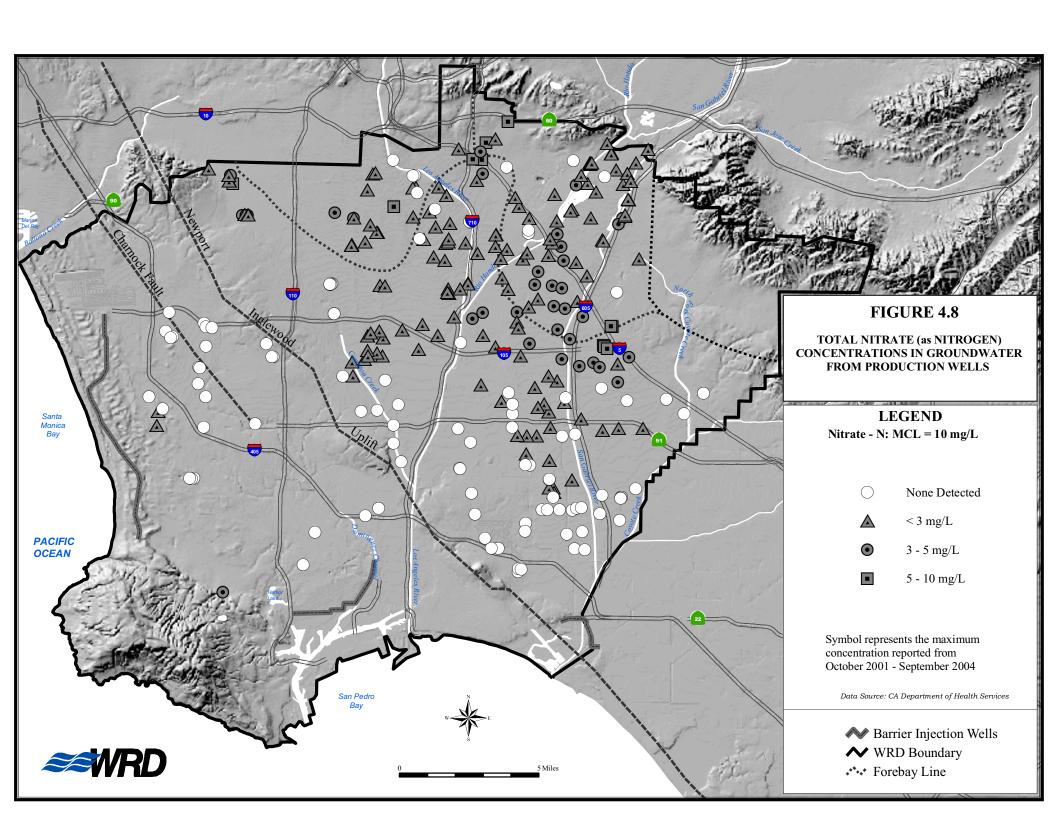

— Zone 6 (155' - 175', Artesia)

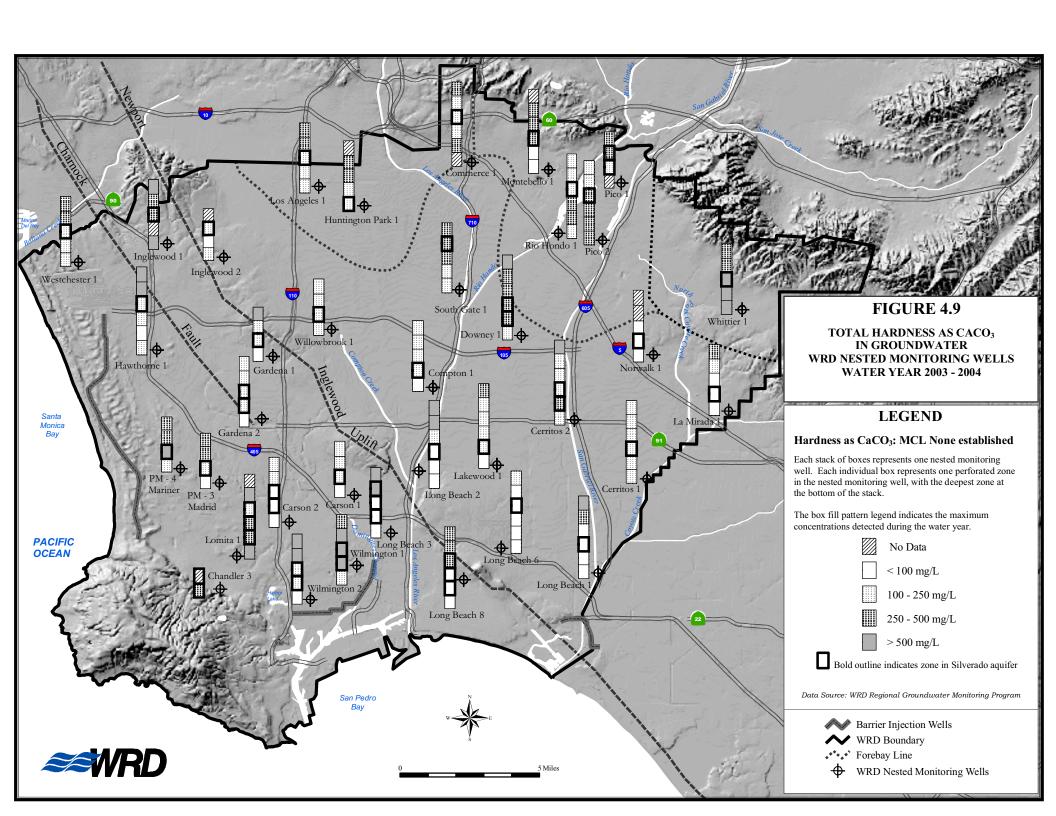

## FLUCTUATIONS OF WATER LEVELS IN WRD NESTED MONITORING WELL CARSON #1

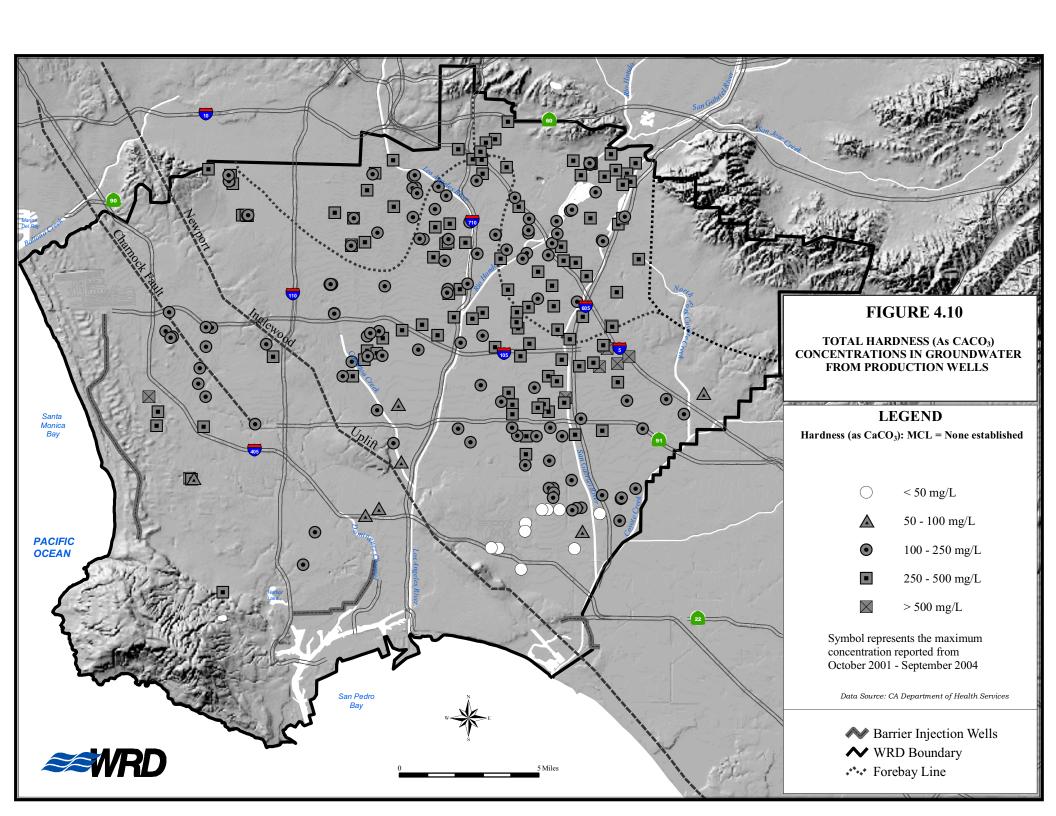


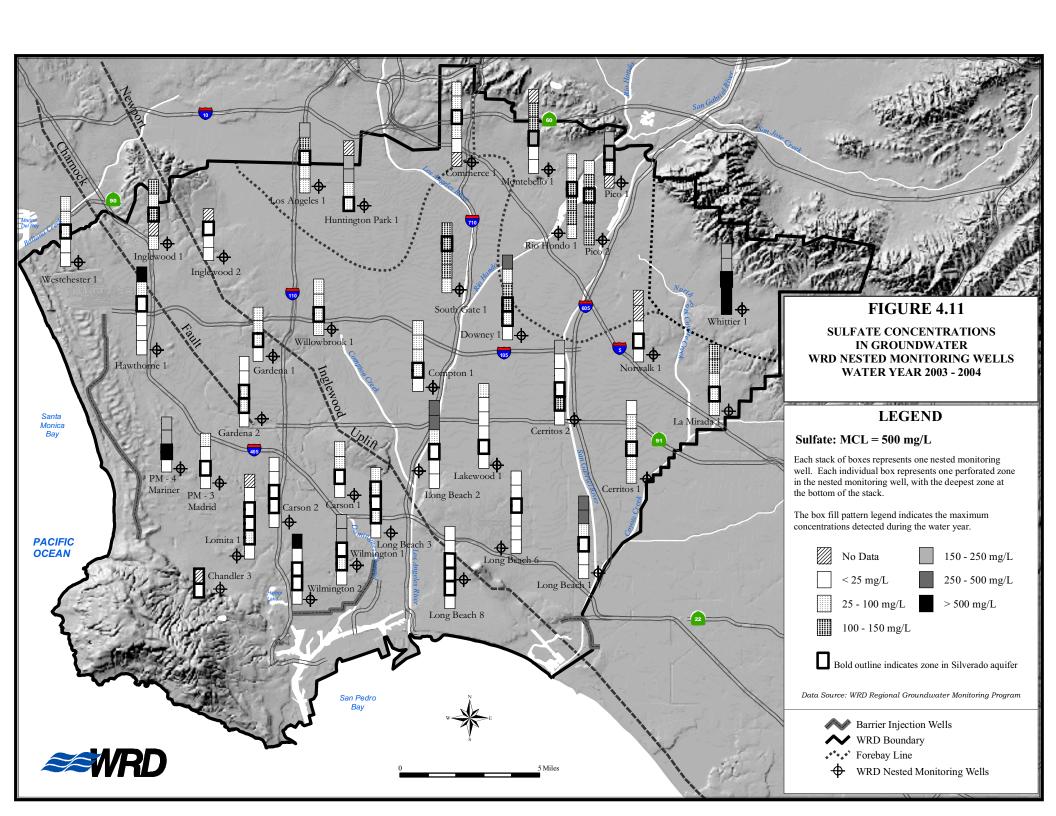



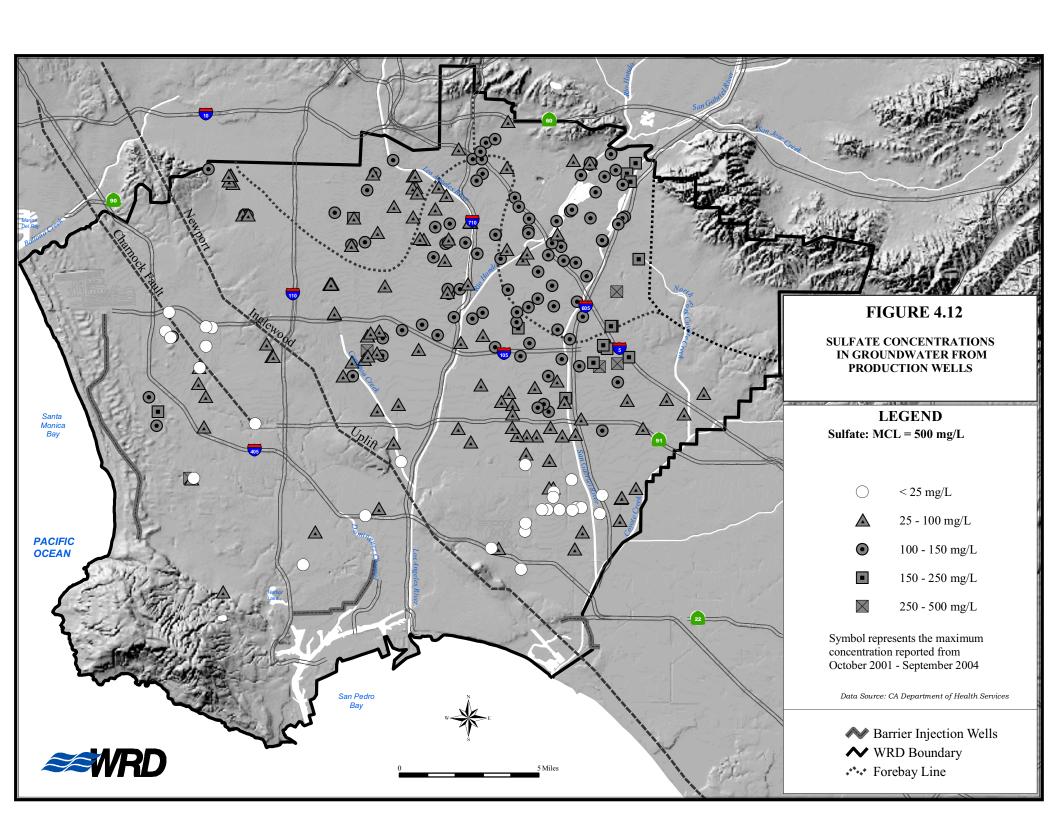



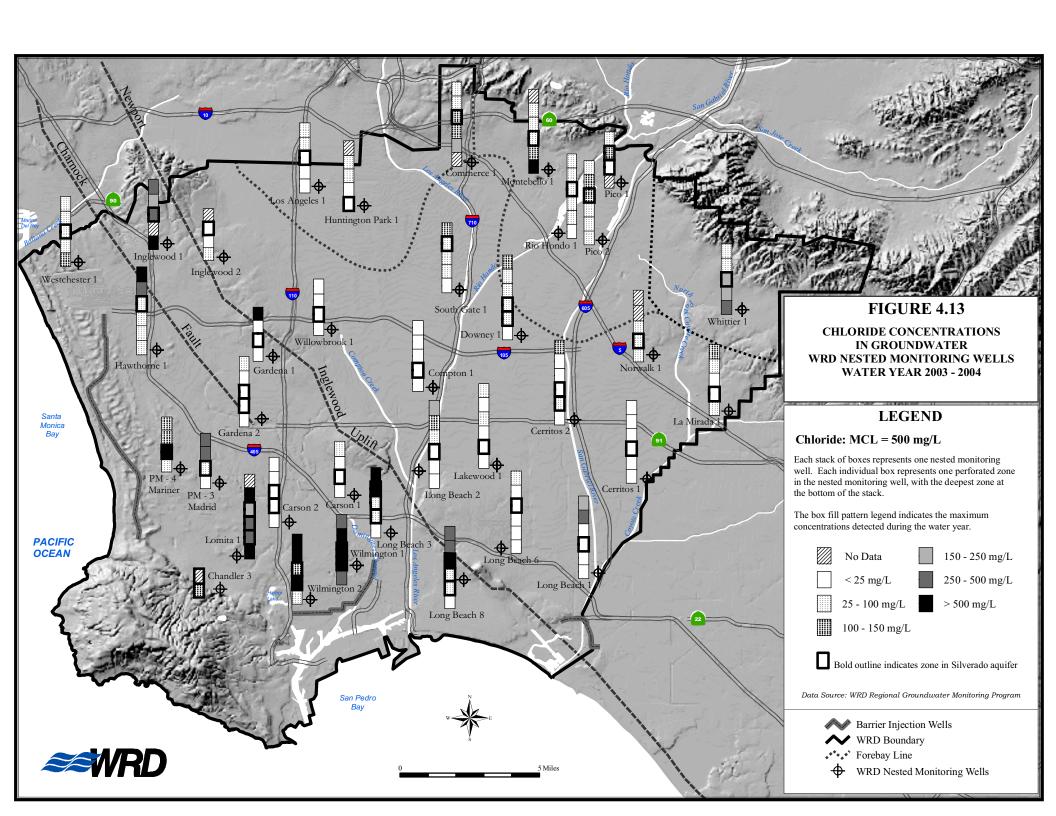



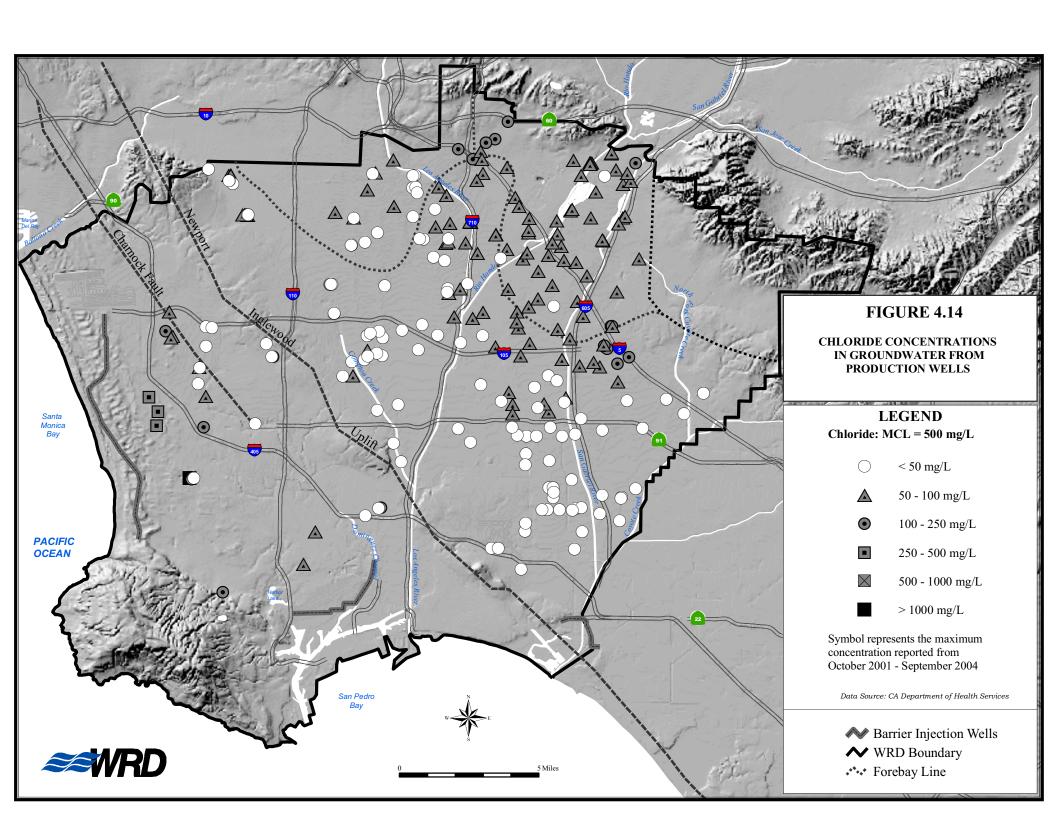



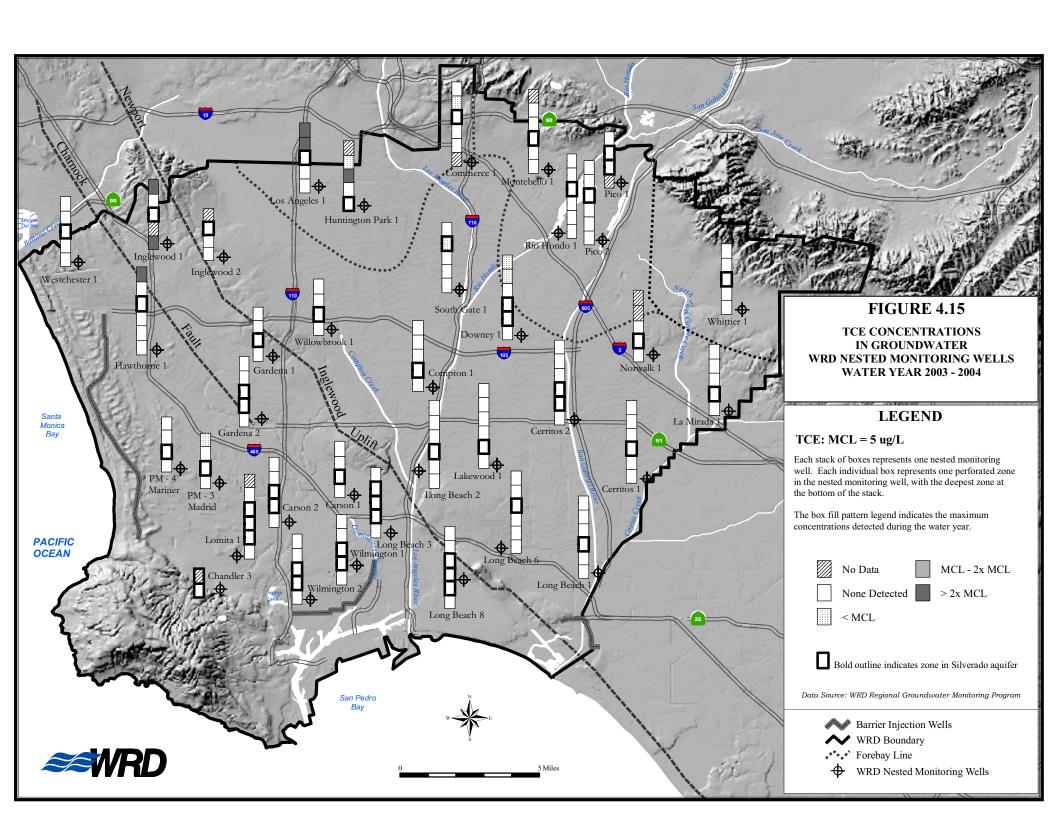



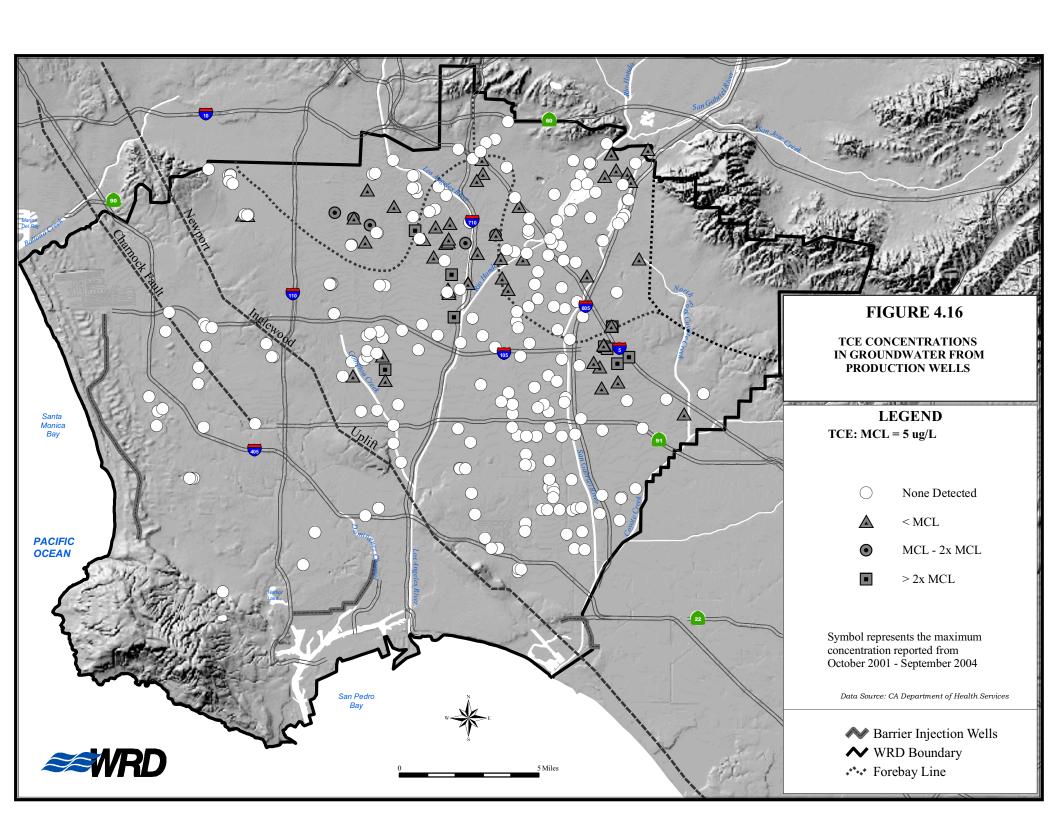



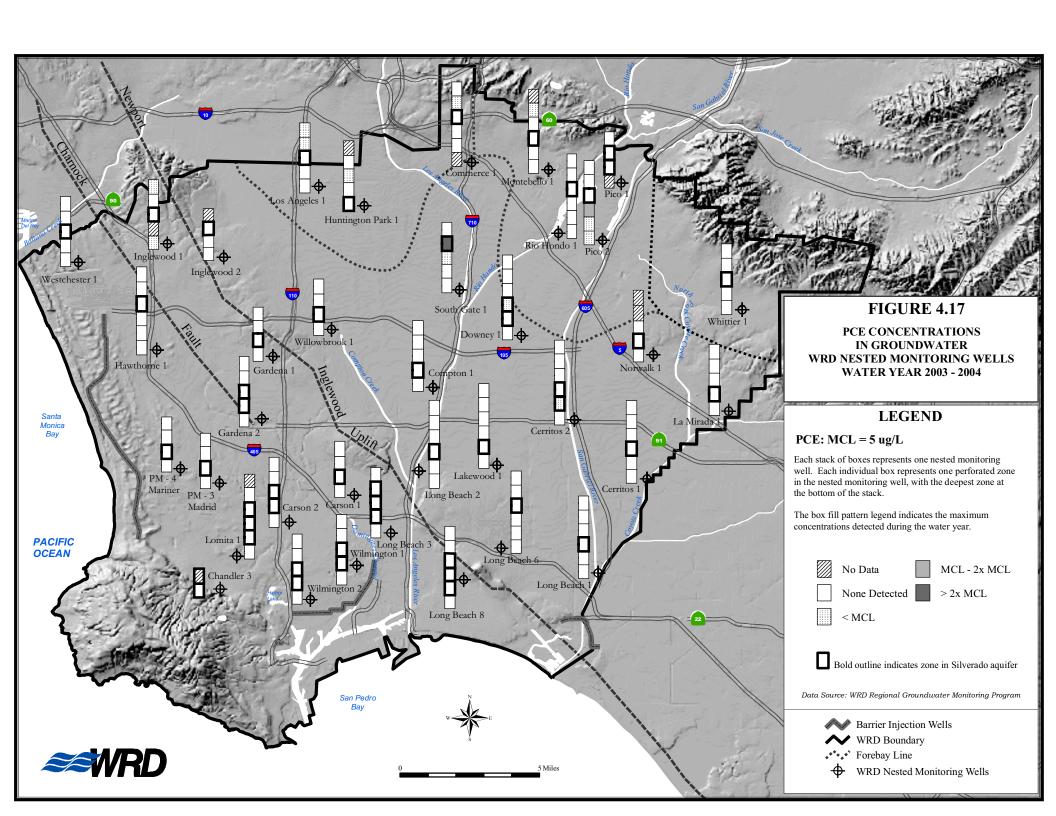



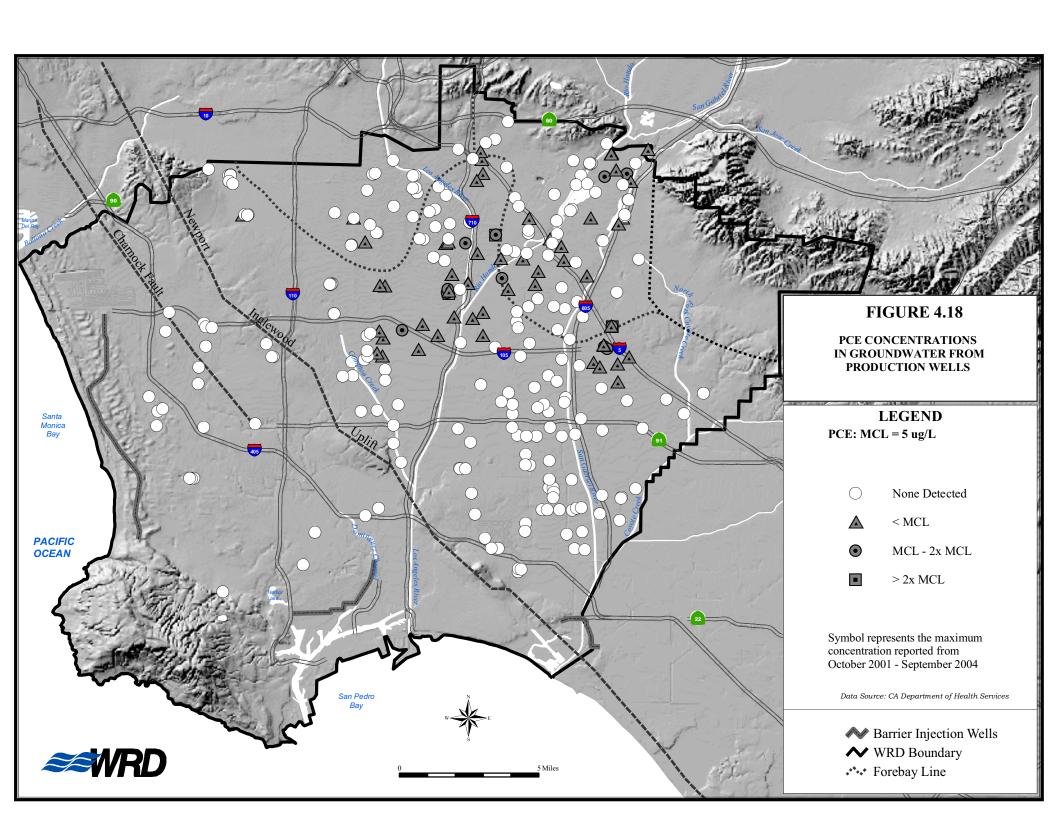



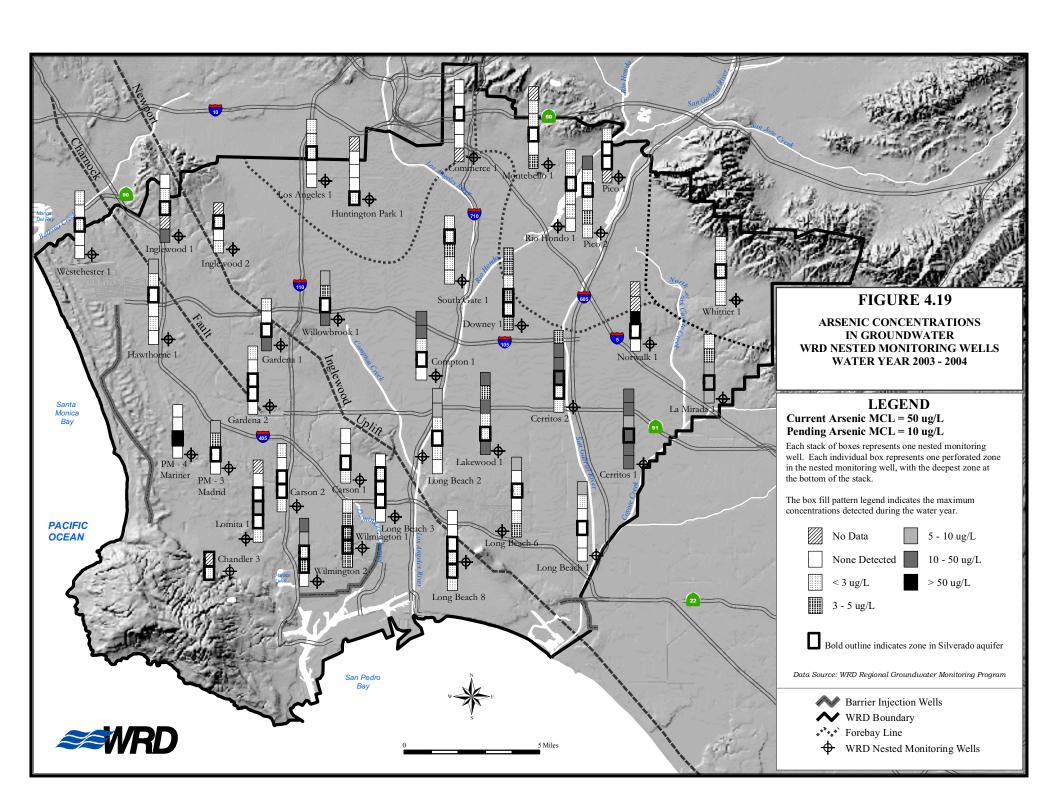



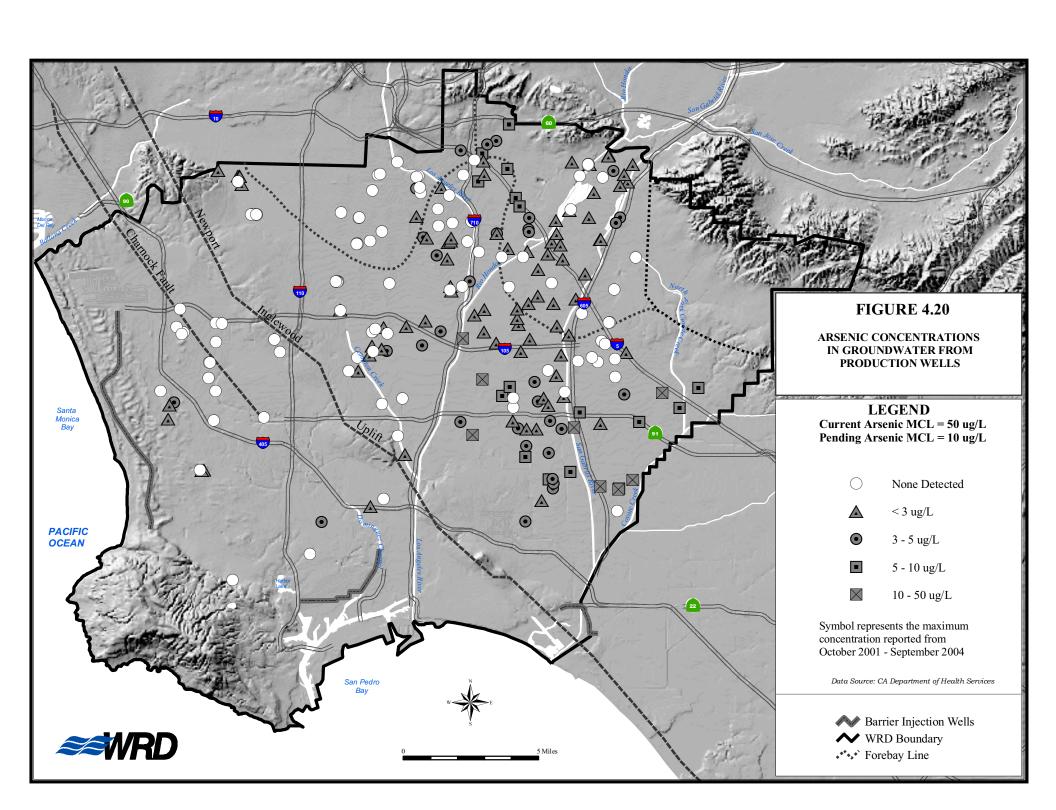



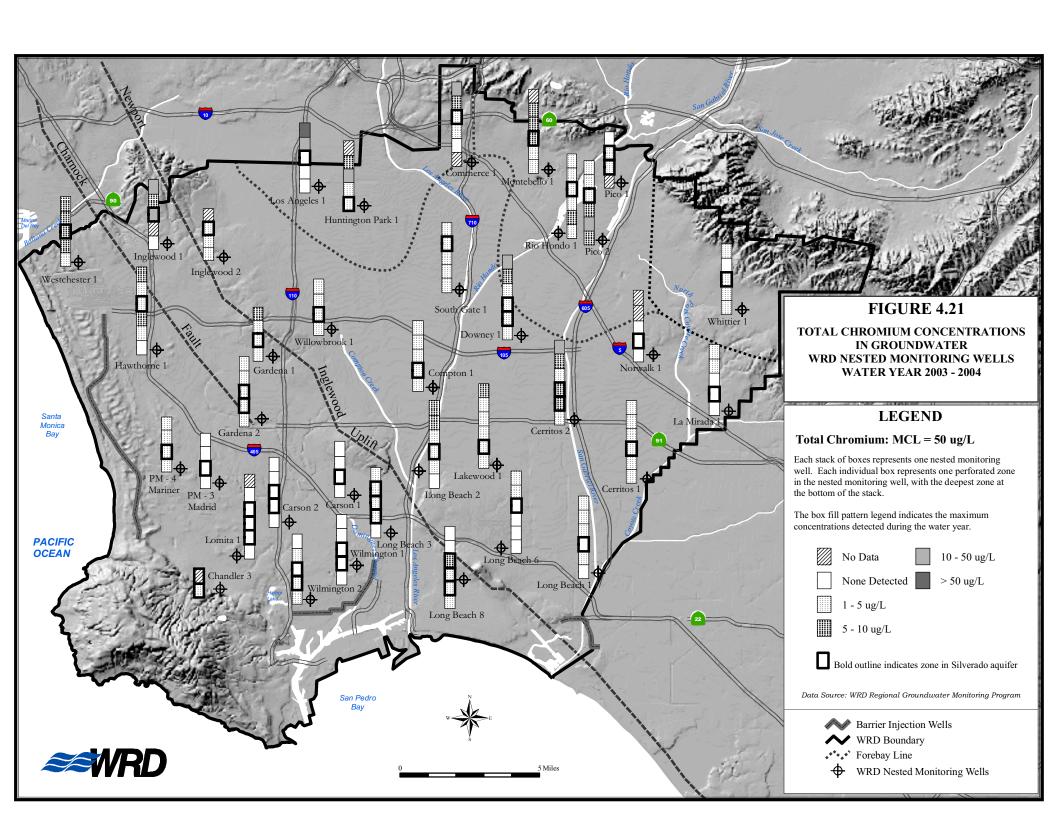



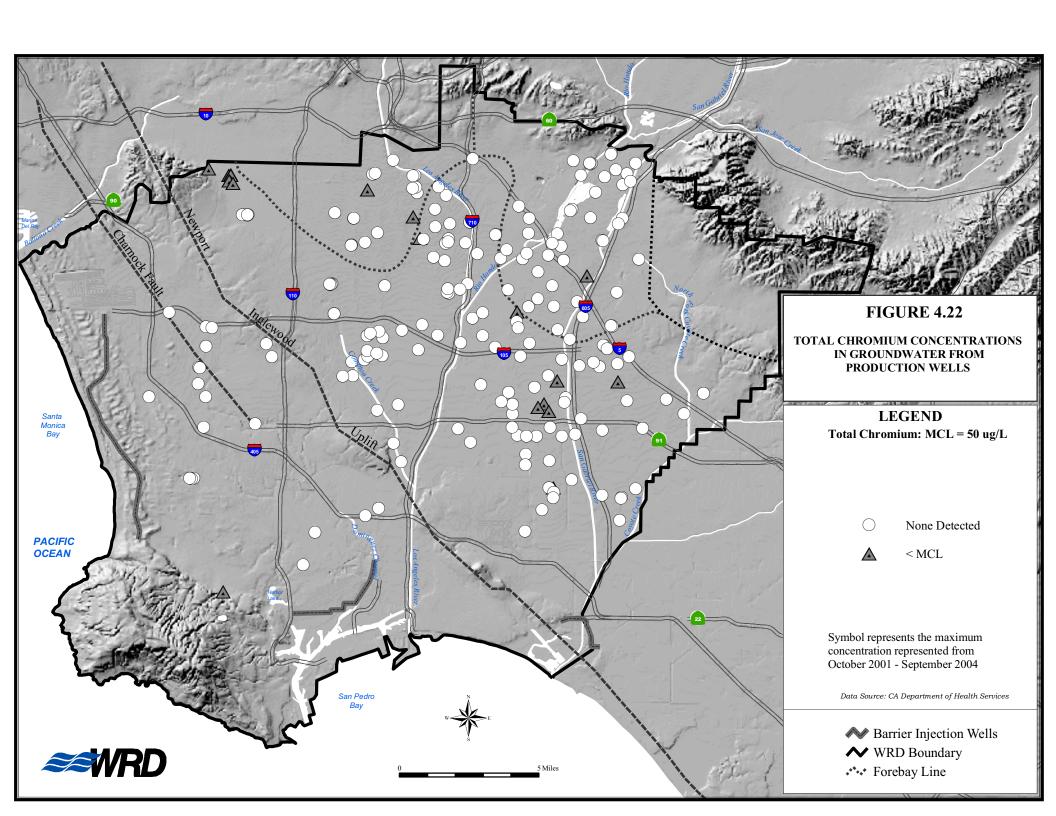



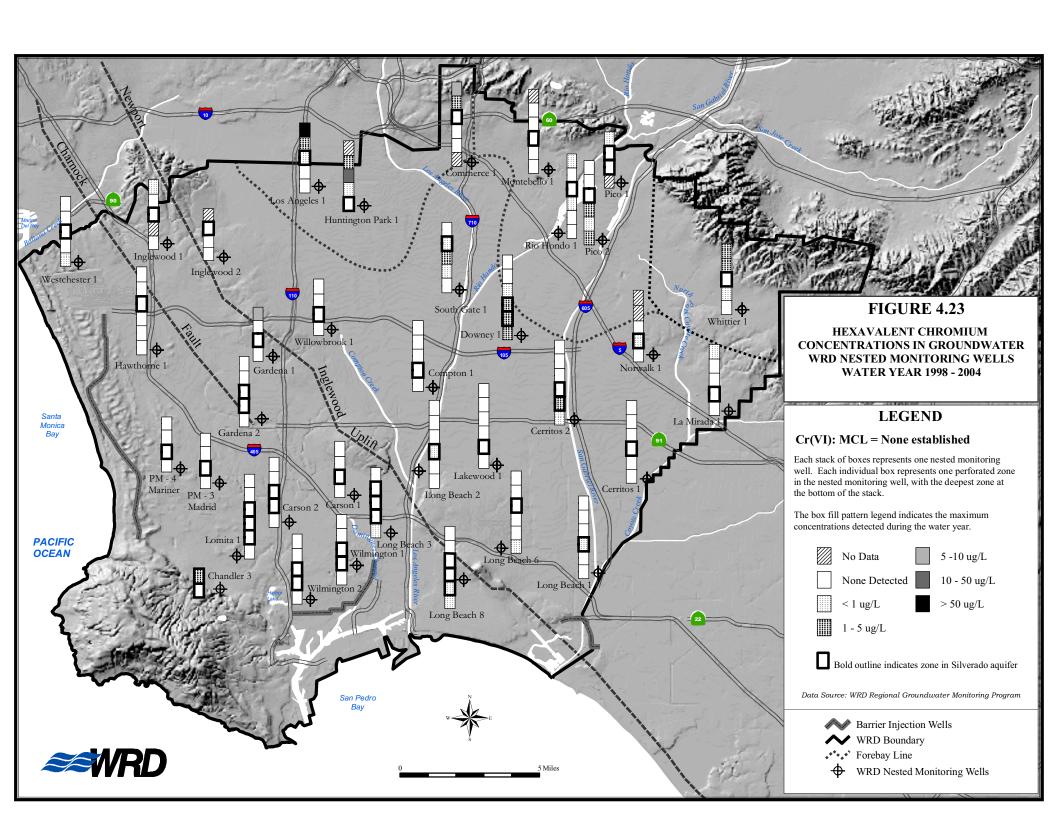



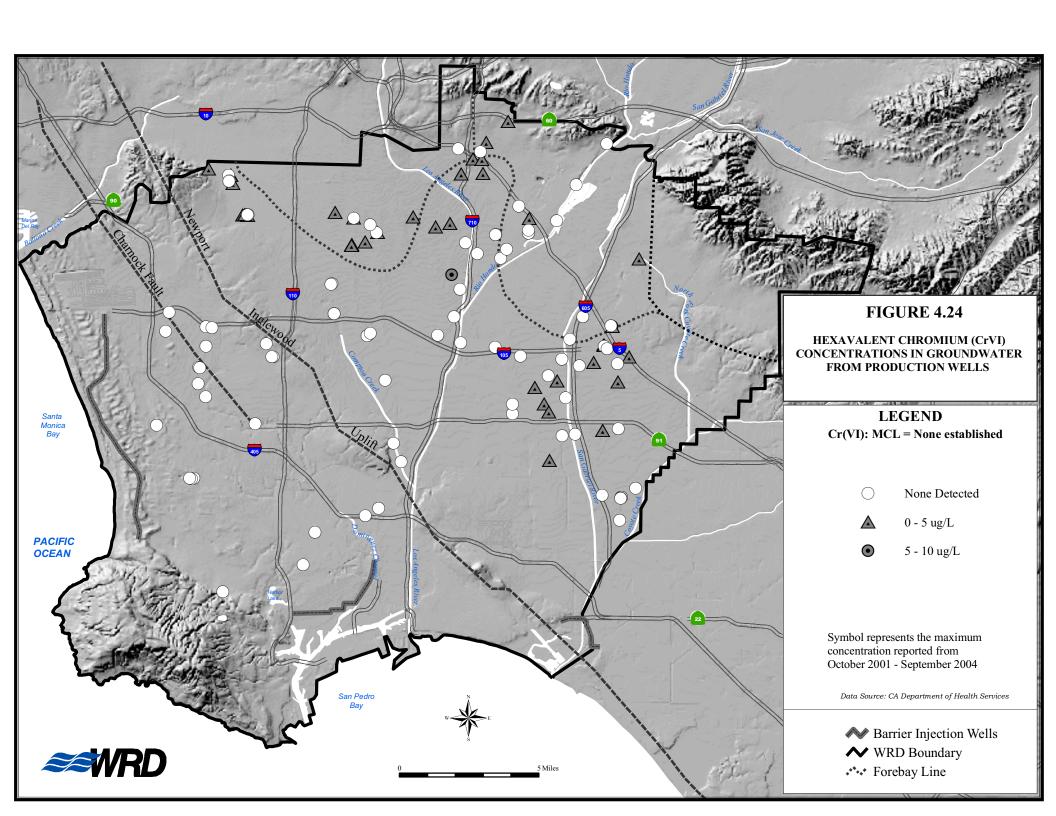



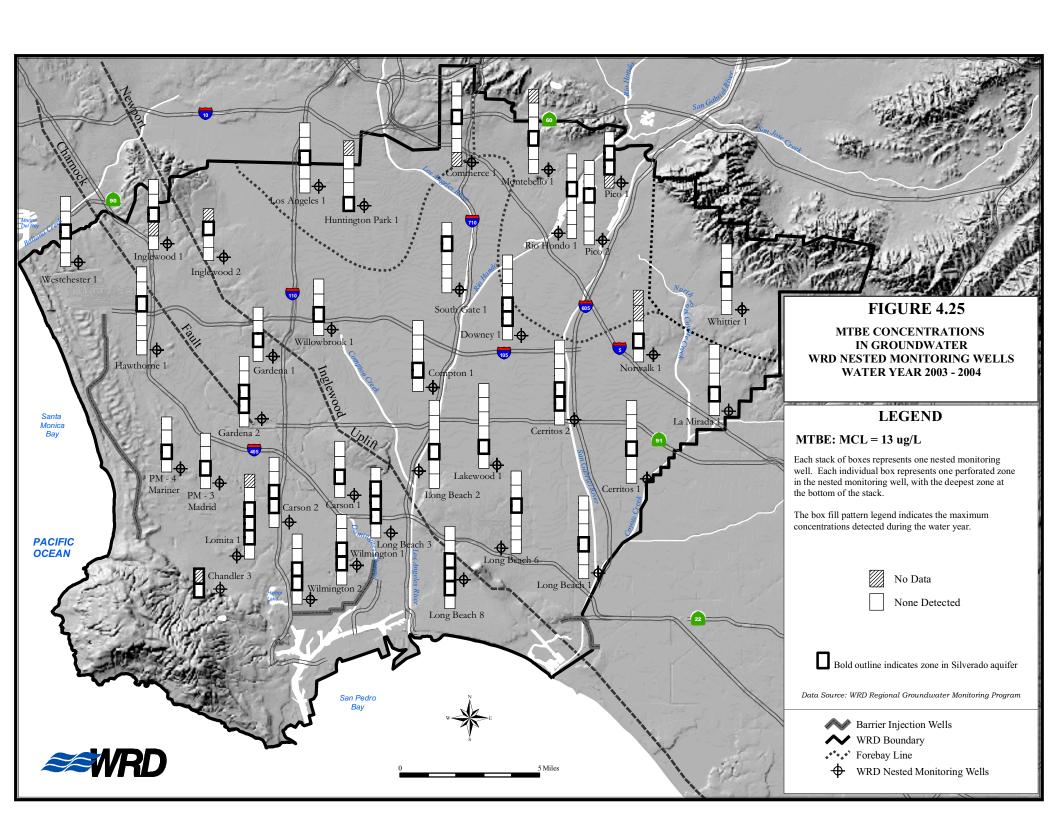



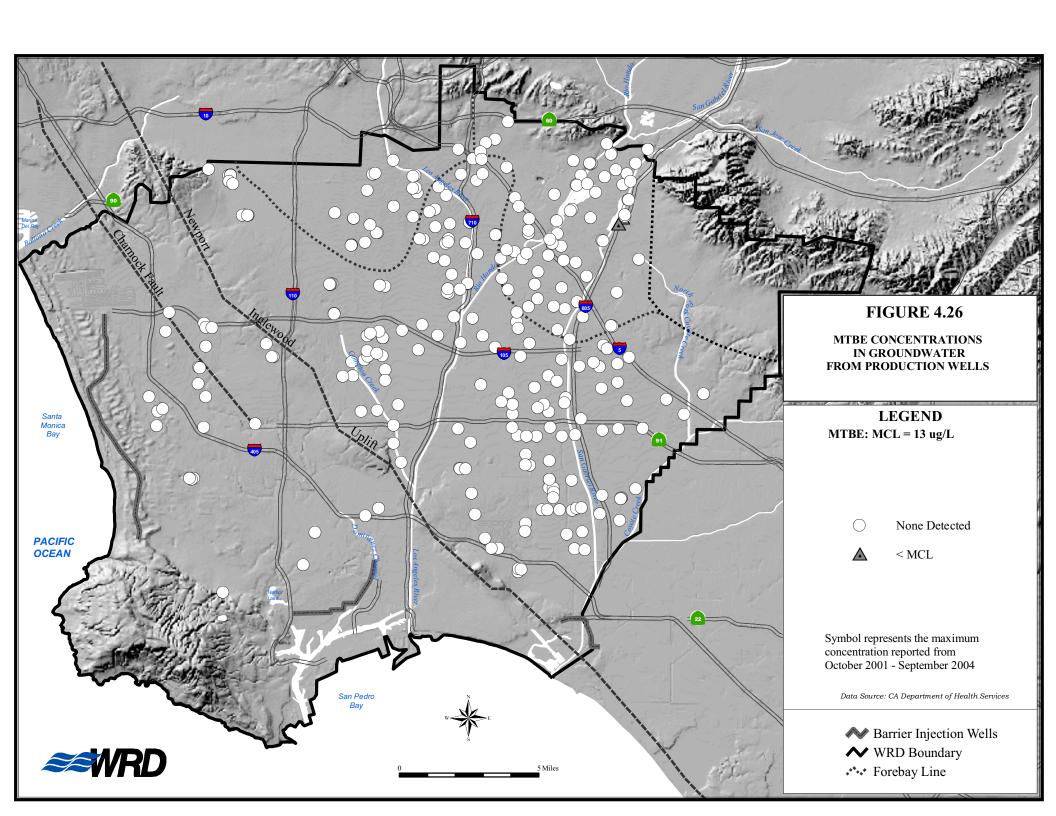



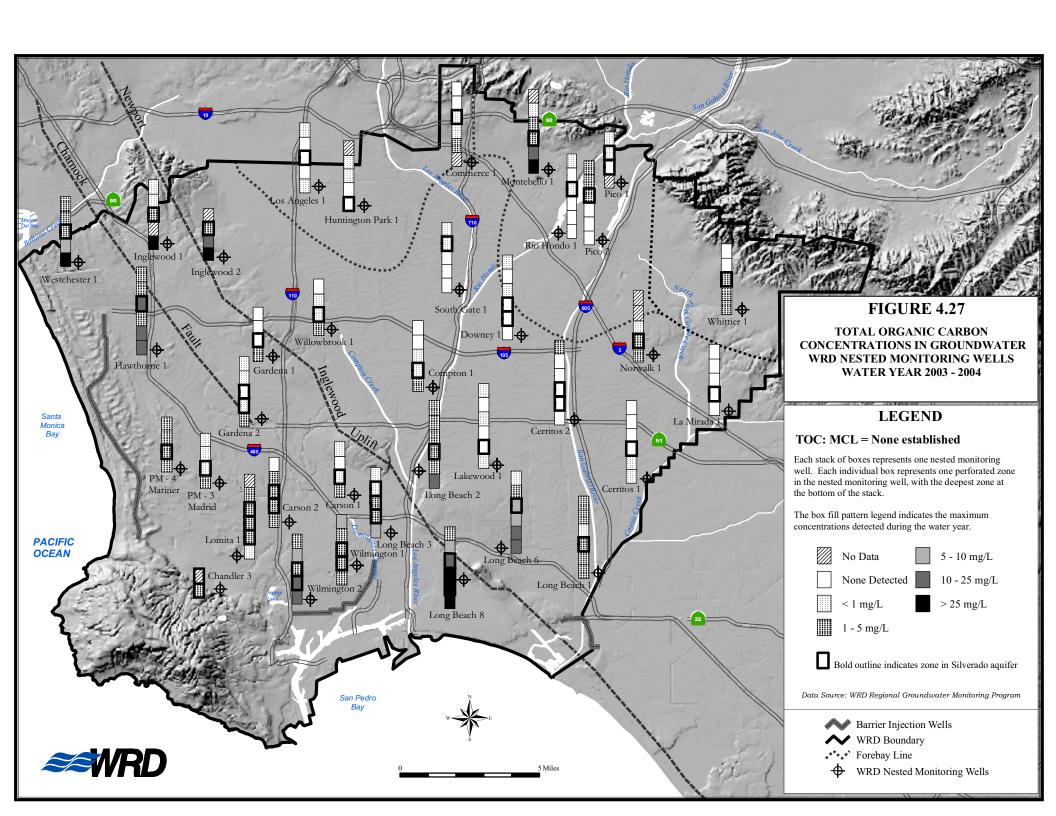



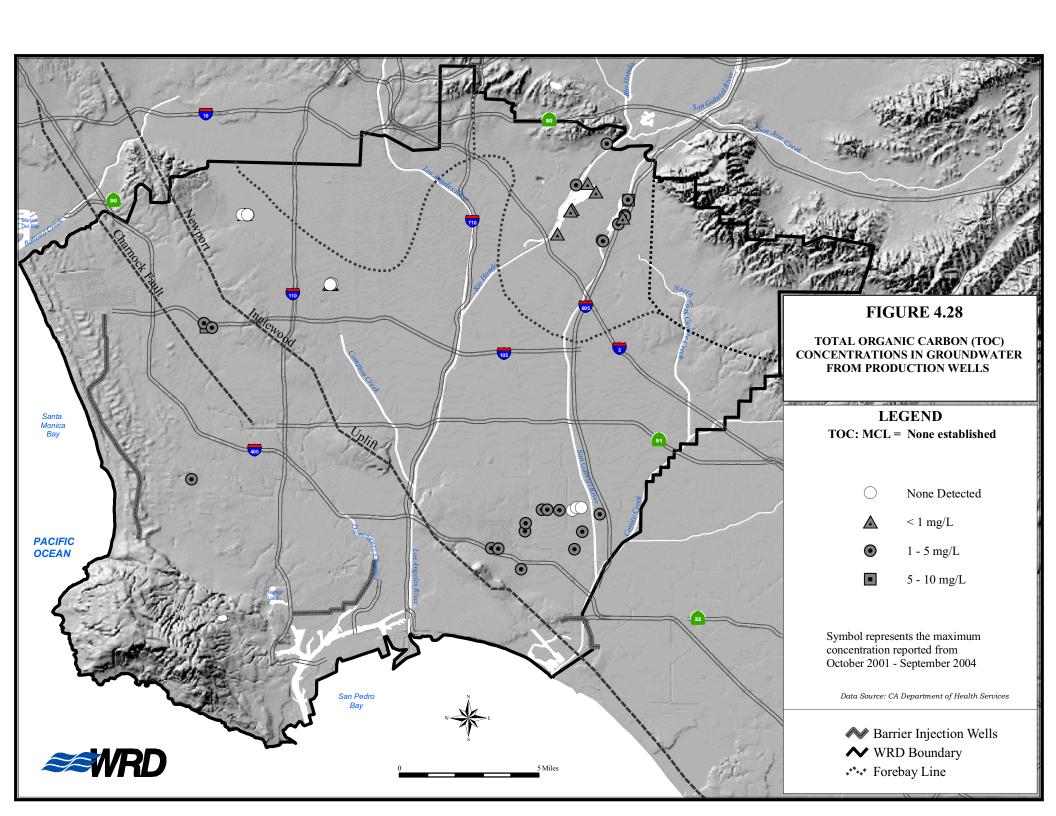



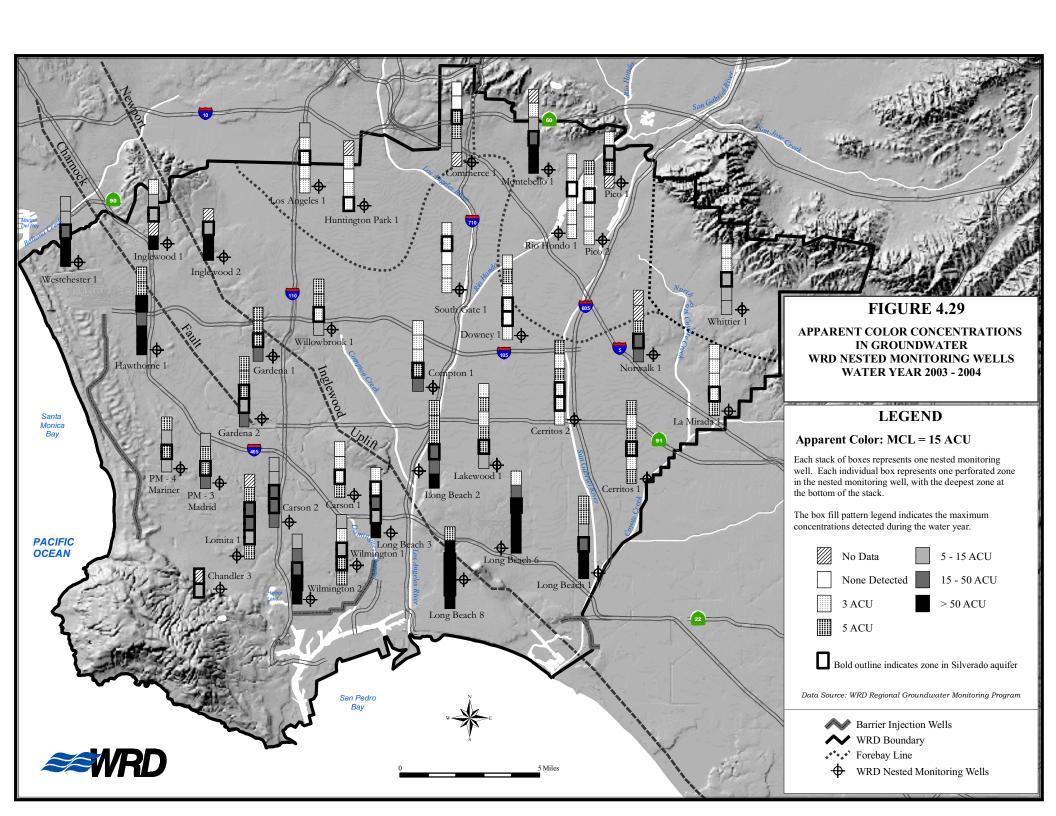



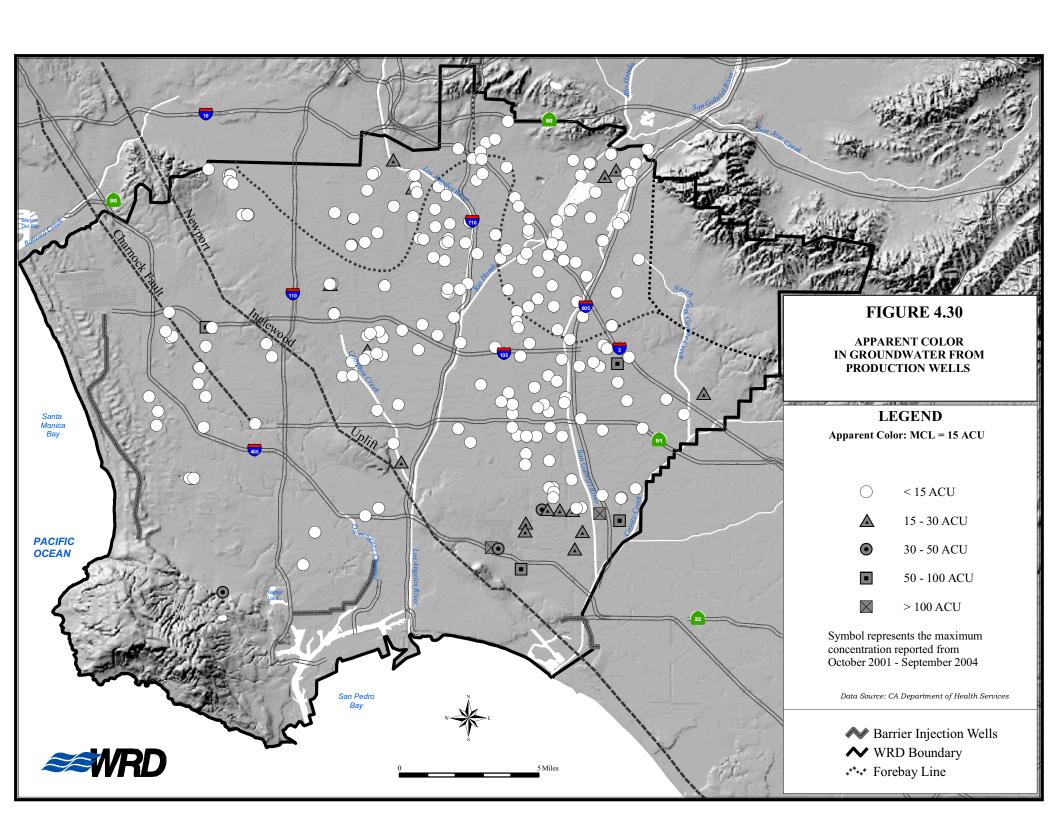



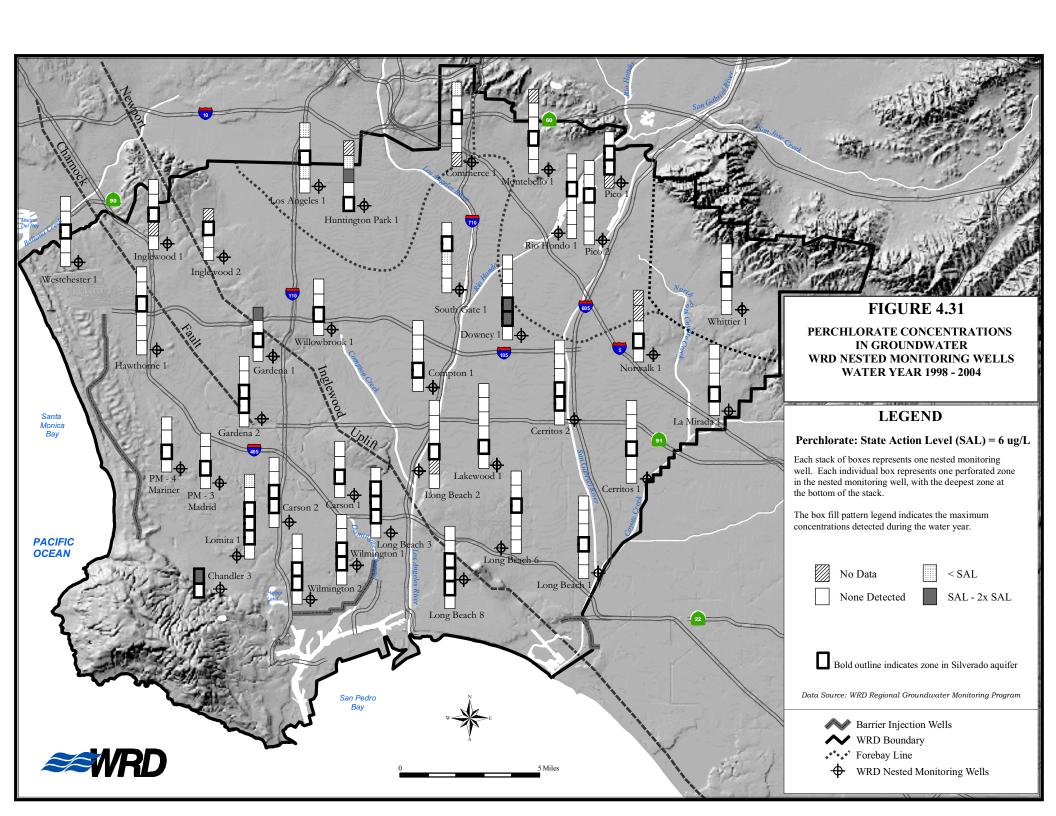



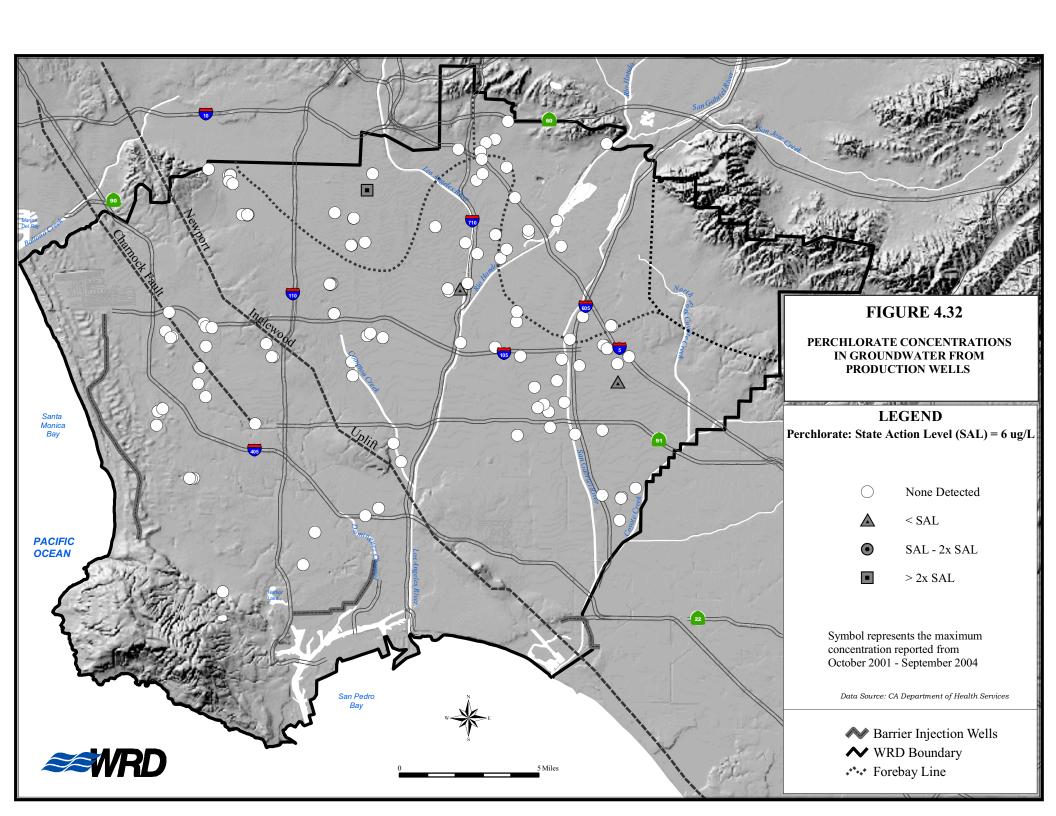



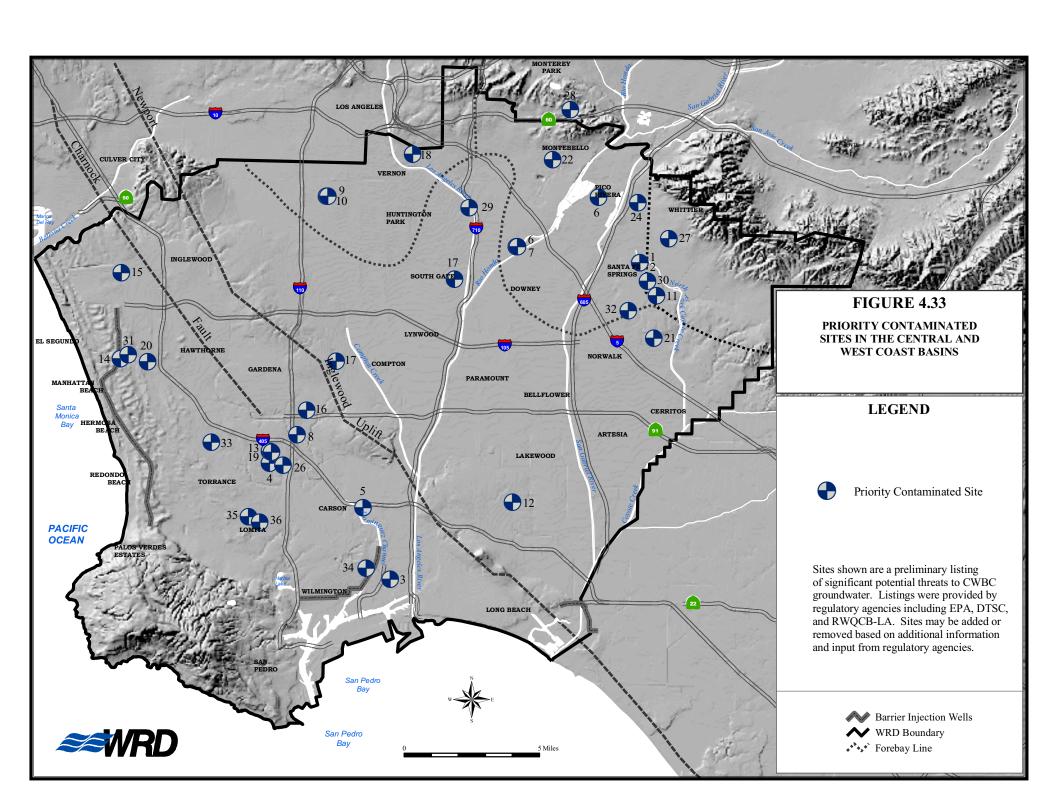














"To provide, protect and preserve high quality groundwater through innovative, cost-effective and environmentally sensitive basin management practices for the benefit of residents and businesses of the Central and West Coast Basins"



Water Replenishment District of Southern California 12621 East 166th Street Cerritos, CA 90703 (562) 921-5521 (562) 921-6101 Fax www.wrd.org